
KSP: A resolution-based prover for multimodal K

Cláudia Nalon1, Ullrich Hustadt2, and Clare Dixon2

1 Department of Computer Science, University of Brası́lia
C.P. 4466 – CEP:70.910-090 – Brası́lia – DF – Brazil

nalon@unb.br
2 Department of Computer Science, University of Liverpool

Liverpool, L69 3BX – United Kingdom
U.Hustadt, CLDixon@liverpool.ac.uk

Abstract. In this paper, we describe an implementation of a hyper-resolution-
based calculus for the propositional basic multimodal logic, Kn. The prover was
designed to support experimentation with different combinations of refinements
for its basic calculus: it is primarily based on the set of support strategy, which can
then be combined with other refinements, simplification techniques and different
choices for the underlying normal form and clause selection. The prover allows
for both local and global reasoning. We show experimental results for different
combinations of strategies and comparison with existing tools.

1 Introduction

In this paper, we present KSP, a theorem prover for the basic multimodal logic Kn which
implements a variation of the set of support strategy [20] for the modal resolution-based
procedure described in [13]. The prover also implements several other refinements and
simplification techniques in order to reduce the search space for a proof. Besides the set
of support strategy, all other refinements of the calculus are implemented as independent
modules, allowing for a better evaluation of how effective they are.

The paper is organised as follows. We introduce the syntax and semantics of Kn in
Section 2. In Section 3 we briefly describe the normal form and the calculus presented
in [13]. Section 4 describes the available strategies and their implementations. Evalua-
tion of strategies and of the performance of the prover compared to existing tools are
given in Section 5. We summarise our results in Section 6.

2 Language

Let A = {1, . . . , n}, n ∈ N, be a finite fixed set of indexes and P = {p, q, s, t,
p′, q′, . . .} be a denumerable set of propositional symbols. The set of modal formulae,
WFFK , is the least set such that every p ∈ P is in WFFK ; if ϕ and ψ are in WFFK ,
then so are ¬ϕ, (ϕ ∧ ψ), and �a ϕ for each a ∈ A. The formulae false, true, (ϕ ∨ ψ),
(ϕ ⇒ ψ), and ♦a ϕ are introduced as the usual abbreviations for (ϕ ∧ ¬ϕ), ¬false,
¬(¬ϕ ∧ ¬ψ), (¬ϕ ∨ ψ), and ¬�a ¬ϕ, respectively (where ϕ,ψ ∈ WFFK). A literal is
either a propositional symbol or its negation; the set of literals is denoted by L. A modal

2 Cláudia Nalon, Ullrich Hustadt, and Clare Dixon

literal is either �a l or ♦a l, where l ∈ L and a ∈ A. The modal depth of a formula is
given by the maximal number of nested occurrences of modal operators in that formula.
The modal level of a formula is the maximal number of nested occurrences of modal
operators in which scope the formula occurs. For instance, in �a ♦a p, the modal depth
of p is 0 and its modal level is 2. Formal definitions can be found at [13].

As our calculus operates on a labelled clausal normal form that is closely linked
to the tree model property of Kripke models for Kn, we briefly overview of the se-
mantics of K. A tree-like Kripke model M for n agents over P is given by a tuple
(W,w0, R1, . . . , Rn, π), whereW is a set of possible worlds with a distinguished world
w0, each accessibility relation Ra is a binary relation on W such that their union is a
tree with root w0, and π : W → (P → {true, false}) is a function which associates
with each world w ∈ W a truth-assignment to propositional symbols. Satisfaction of a
formula at a world w of a model M is defined by:

– 〈M,w〉 |= p if, and only if, π(w)(p) = true, where p ∈ P;
– 〈M,w〉 |= ¬ϕ if, and only if, 〈M,w〉 6|= ϕ;
– 〈M,w〉 |= (ϕ ∧ ψ) if, and only if, 〈M,w〉 |= ϕ and 〈M,w〉 |= ψ;
– 〈M,w〉 |= �a ϕ if, and only if, for all w′, wRaw

′ implies 〈M,w′〉 |= ϕ.
Let M = (W,w0, R1, . . . , Rn, π) be a model. A formula ϕ is locally satisfied in M ,
denoted by M |=L ϕ, if 〈M,w0〉 |= ϕ. The formula ϕ is locally satisfiable if there is
a model M such that 〈M,w0〉 |= ϕ. A formula ϕ is globally satisfied in M , if for all
w ∈ W , 〈M,w〉 |= ϕ. We denote by depth(w) the length of the unique path from w0

to w through the union of the accessibility relations in M . We call a modal layer the
equivalence class of worlds at the same depth in a model.

We note that checking the local satisfiability of a formula ϕ can be reduced to the
problem of checking the local satisfiability of its subformulae at the modal layer of a
model which corresponds to the modal level where those subformulae occur (see [1]).
Due to this close correspondence of modal layer and modal level we use the terms
interchangeably. Also, checking the global satisfiability of ϕ can be reduced to checking
the local satisfiability of ϕ at all modal layers (up to an exponential distance from the
root) of a model [3,18]. Thus, an uniform approach based on modal levels can be used
to deal with both problems, as we show in the next section.

3 A Calculus for Kn

The calculus for Kn presented in [13] is clausal, where clauses are labelled by the
modal level at which they occur. In order to refer explicitly to modal levels, the modal
language is extended with labels. We write ml : ϕ to denote that ϕ is true at the modal
layer ml in a Kripke model, where ml ∈ N ∪ {∗}. By ∗ : ϕ we mean that ϕ is true
at all modal layers in a Kripke model. The notion of local satisfiability is extended as
expected: for a model M , M |=L ml : ϕ if, and only if, for all worlds w ∈ W such
that depth(w) = ml, we have 〈M,w〉 |=L ϕ. Then, the layered normal form, called
SNFml, is given by a conjunction of literal clauses of the form ml : D, where D is a
disjunction of literals, and modal clauses of the form ml : l ⇒ l′, where l ∈ L and l′ is
a modal literal. Transformation into SNFml uses renaming and preserves satisfiability.

The motivation for the use of this labelled clausal normal form is that inference
rules can then be guided by the semantic information given by the labels and applied to

KSP: A resolution-based prover for multimodal K 3

[LRES]
ml : D ∨ l

ml′ : D′ ∨ ¬l
ml : D ∨ D′

[MRES]
ml : l1 ⇒ �a l

ml′ : l2 ⇒ ♦a ¬l
ml : ¬l1 ∨ ¬l2

[GEN2]
ml1 : l′1 ⇒ �a l1
ml2 : l′2 ⇒ �a ¬l1
ml3 : l′3 ⇒ ♦a l2
ml : ¬l′1 ∨ ¬l′2 ∨ ¬l′3

[GEN1] ml1 : l′1 ⇒ �a ¬l1
...

mlm : l′m ⇒ �a ¬lm
mlm+1 : l′ ⇒ ♦a ¬l
mlm+2 : l1 ∨ . . . ∨ lm ∨ l

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

[GEN3] ml1 : l′1 ⇒ �a ¬l1
...

mlm : l′m ⇒ �a ¬lm
mlm+1 : l′ ⇒ ♦a l

mlm+2 : l1 ∨ . . . ∨ lm
ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

Table 1: Inference rules, where ml = σ({ml1, . . . ,mlm+1,mlm+2 − 1}) in GEN1,
GEN3; ml = σ({ml,ml′}) in LRES, MRES; and ml = σ({ml1,ml2,ml3}) in GEN2.

smaller sets of clauses, reducing the number of unnecessary inferences, and therefore
improving the efficiency of the proof procedure. The calculus comprises the set of infer-
ence rules given in Table 1. Unification on sets of labels is defined by σ({ml, ∗}) = ml;
and σ({ml}) = ml; otherwise, σ is undefined. The inference rules can only be applied
if the unification of their labels is defined (where ∗ − 1 = ∗). This calculus has been
shown to be sound, complete, and terminating [13].

4 Implementation

KSP is an implementation, written in C, of the calculus given in [13]. The prover was
designed to support experimentation with different combinations of refinements of its
basic calculus. Refinements and options for (pre)processing the input are coded as inde-
pendently as possible in order to allow for the easy addition and testing of new features.
This might not lead to optimal performance (e.g. one technique needs to be applied after
the other, whereas most tools would apply them together), but it helps to evaluate how
the different options independently contribute to achieve efficiency. In the following we
give a brief overview of the main aspects of the implementation.
Transformation to clausal form: If the input is a set of formulae, then these formu-
lae are first transformed into their prenex or antiprenex normal form (or one after the
other) [11] and then into Negation Normal Form (NNF) or into Box Normal Form
(BNF) [15]. With options nnfsimp (resp. bnfsimp), simplification is applied to formulae
in NNF (resp. BNF); with option early mlple, pure literal elimination is applied at every
modal level. There are then four different options that determine the normal form. In
SNF+

ml, negative literals in the scope of modal operators are renamed by propositional
symbols; in SNF++

ml all literals in the scope of modal operators are renamed by propo-
sitional symbols. SNF−ml and SNF−−ml are defined analogously, with positive literals
being renamed by negative ones. The reuse of propositional symbols in renaming can
also be controlled. In our evaluation, given in Section 5, the same propositional symbol
is used for all occurrences of a formula being renamed.

4 Cláudia Nalon, Ullrich Hustadt, and Clare Dixon

Preprocessing of clauses: Self-subsumption is applied at this step if the options for
forward and/or backward subsumption are set [?]. The inference rules MRES and GEN2
are also exhaustively applied at this step, that is, before the prover enters the main loop.
Main loop: The main loop is based on the given-clause algorithm implemented in Otter
[10], a variation of the set of support strategy [20], a refinement which restricts the set
of choices of clauses participating in a derivation step. For the classical case, a set of
clauses ∆ is partitioned in two sets Γ and Λ = ∆ \ Γ , where Λ must be satisfiable.
McCune refers to Γ as the set of support (the sos, aka passive or unprocessed set);
and Λ is called the usable (aka as active or processed set). The given clause is chosen
from Γ , resolved with clauses in Λ, and moved from Γ to Λ. Resolvents are added
to Γ . For the modal calculus, the set of clauses is further partitioned according to the
modal layer at which clauses are true. That is, for each modal layer ml there are three
sets: Γ lit

ml, Λ
lit
ml and Λmod

ml , where the first two sets contain literal clauses while the
latter contains modal clauses. As the calculus does not generate new modal clauses
and because the set of modal clauses by itself is satisfiable, there is no need for a set
for unprocessed modal clauses. Attempts to apply an inference rule are guided by the
choice, for each modal layer ml, of a literal clause in Γ lit

ml, which can be resolved
with either a literal clause in Λlit

ml or with a set of modal clauses in Λmod
ml−1. There are

six options for automatically populating the usable: all negative clauses, all positive
clauses, all non-negative clauses, all non-positive clauses, all clauses whose maximal
literal is positive, and all clauses whose maximal literal is negative. The prover can
either perform local or global reasoning.
Refinements: Besides the basic calculus with a set-of-support strategy, the user can fur-
ther restrict LRES by choosing ordered (clauses can only be resolved on their maximal
literals with respect to an ordering chosen by the prover in such a way to preserve com-
pleteness), negative (one of the premises is a negative clause, i.e. a clause where all
literals are of the form ¬p for some p ∈ P), positive (one of the premises is a positive
clause), or negative + ordered resolution (both negative and ordered resolution infer-
ences are performed).

The completeness of some of these refinements depends on the particular nor-
mal form chosen. For instance, negative resolution is incomplete without SNF+

ml or
SNF++

ml . For example, the set {p, p⇒ �¬q, p⇒ ♦s,¬s ∨ q} is unsatisfiable, but as
there is no negative literal clause in the set, no refutation can be found. By renaming
¬q in the scope of �, we obtain the set {p, p ⇒ �t, p ⇒ ♦s,¬s ∨ q,¬t ∨ ¬q} in
SNF+

ml, from which a refutation using negative resolution can be found. Similarly, or-
dered resolution requires SNF++

ml for completeness, while positive resolution requires
SNF−ml or SNF−−ml .
Inference rules: Besides the inference rules given in Table 1, three more inference rules
are also implemented: unit resolution, which propagates unit clauses through all literal
clauses and the right-hand side of modal clauses; lhs unit resolution, which propagates
unit clauses through the left-hand side of modal clauses; and ires, which together with
the global option, implements initial resolution and, thus, the calculus given in [12].
Redundancy elimination: Pure literal elimination can be applied globally or by modal
layer. Both forward and backward subsumption are implemented. Subsumption is ap-
plied in lazy mode: a clause is tested for subsumption only when it is selected from the

KSP: A resolution-based prover for multimodal K 5

sos and only against clauses in the usable. As pointed out in [17], this avoids expensive
checks for clauses that might never be selected during the search of a proof.
Clause selection: There are five different heuristics for choosing a literal clause in the
sos: shortest, newest, oldest, greatest maximal literal, and the smallest maximal literal.

For a comprehensive list of options, see [14], where the sources and instructions on
how to install and use KSP can be found.

5 Evaluation

We have compared KSP with BDDTab [4], FaCT++ 1.6.3 [19], InKreSAT 1.0 [7], Spar-
tacus 1.0 [5], and a combination of the optimised functional translation [6] with Vampire
3.0 [8] 3. In this context, FaCT++ represents the previous generation of reasoners while
the remaining systems have all been developed in recent years. Unless stated otherwise,
the reasoners were used with their default options.

Our benchmarks [14] consist of three collections of modal formulae:
1. The complete set of TANCS-2000 modalised random QBF (MQBF) formulae [9]

complemented by the additional MQBF formulae provided by Tebbi and Kamin-
ski [7]. This collection consists of five classes, called qbf, qbfL, qbfS, qbfML, and
qbfMS in the following, with a total of 1016 formulae, of which 617 are known to be
satisfiable and 399 are known to be unsatisfiable (due to at least one of the provers
being able to solve the formula). The minimum modal depth of formulae in this
collection is 19, the maximum 225, average 69.2 with a standard deviation of 47.5.

2. LWB basic modal logic benchmark formulae [2], with 56 formulae chosen from
each of the 18 parameterised classes. In most previous uses of these benchmarks,
only parameter values 1 to 21 were used for each class, with the result that provers
were able to solve all benchmark formulae for most of the classes. Instead we have
chosen the 56 parameter values so that the best current prover will not be able to
solve all the formulae within a time limit of 1000 CPU second. The median value of
the maximal parameter value used for the 18 classes is 1880, far beyond what has
ever been tested before. Of the resulting 1008 formulae, half are satisfiable and half
are unsatisfiable by construction of the benchmark classes.

3. Randomly generated 3CNFK formulae [16] over 3 to 10 propositional symbols with
modal depth 1 or 2. We have chosen formulae from each of the 11 parameter settings
given in the table on page 372 of [16]. For the number of conjuncts we have focused
on a range around the critical region where about half of the generated formulae are
satisfiable and half are unsatisfiable. The resulting collection contains 1000 formu-
lae, of which 457 are known to be satisfiable and 464 are known to be unsatisfiable.
Note that this collection is quite distinct to the one used in [7] which consisted of
135 3CNFK formulae over 3 propositional symbols with modal depth 2, 4 or 6, all
of which were satisfiable.

Benchmarking was performed on PCs with an Intel i7-2600 CPU @ 3.40GHz and 16GB
main memory. For each formula and each prover we have determined the median run
time over five runs with a time limit of 1000 CPU seconds for each run.

3 We have excluded *SAT from the comparison as it produced incorrect results on a number of
benchmark formulae.

6 Cláudia Nalon, Ullrich Hustadt, and Clare Dixon

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
S
ol
ve
d

MQBF

KSP (cord) KSP (negative) KSP (negative ordered)
KSP (positive) KSP (plain)

(a) KSP with different refinements

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
S
ol
ve
d

MQBF

BDDTab InKreSAT KSP (cord)
FaCT++ Spartacus OFT + Vampire

(b) All provers

Fig. 1: Benchmarking results for MQBF

Figure 1a compares the impact of different refinements on the performance of KSP
on the MQBF collection. With plain KSP uses the rules shown in Table 1, without
additional refinement, on a set of SNF++

ml clauses. With cord and negative ordered,
KSP applies ordered resolution and negative + ordered resolution, respectively, again
on a set of SNF++

ml clauses. The configuration negative uses negative resolution on a
set of SNF+

ml clauses, while with positive, KSP applies positive resolution on SNF−ml

clauses. Irrespective of the refinement, the shortest clause is selected to perform infer-
ences; both forward and backward subsumption are used; the lhs-unit resolution rule is
applied; prenex is set; and no simplification steps are applied. The usable is populated
with clauses whose maximal literal is positive, except for positive resolution where it
is populated with clauses whose maximal literal is negative. The cord configuration
offers the best performance. Ordered resolution restricts the applicability of the rules
further than the other refinements. Not only is this an advantage on satisfiable formulae
in that a saturation can be found more quickly, but also unsatisfiable formulae where
with this refinement KSP finds refutations much more quickly than with any of the other
refinements.

Figure 1b compares the performance of all the provers on the MQBF collection. It
shows that KSP performs better than any of the other provers. The graphs in Figure 2
offer some insight into why KSP performs well on these formulae. Each of the five
graphs shows for one formula from each class how many atomic subformulae occur at

25 50 75 100

2

4

6

8

Modal level

#
A
to
m
s

qbfS (C30,V16,D4)

25 50 75 100

100

200

300

Modal level

qbfMS (C30,V16,D4)

25 50 75 100

100

200

300

Modal level

qbf (C30,V16,D4)
qbfL (C30,V16,D4)

25 50 75 100 125 150 175

100

200

300

Modal level

qbfML (C30,V16,D4)

Fig. 2: Modal structure of MQBF formulae

KSP: A resolution-based prover for multimodal K 7

BDDTab FaCT++ InKreSAT KSP (cord) Spartacus OFT +
Vampire

k branch n 22 22 12 12 15 15 18 18 12 12 50 70
k branch p 22 22 12 12 22 22 23 23 14 14 50 70
k d4 n 20 440 6 40 34 48 1560 28 760 14 200
k d4 p 26 640 24 600 18 360 54 1800 32 920 21 960
k dum n 39 2400 42 2640 23 1120 49 3200 44 2800 17 640
k dum p 42 2640 38 2320 28 1520 50 3280 46 2960 18 720
k grz n 35 2600 27 1800 50 4500 5 50 52 5500 24 1500
k grz p 35 2600 27 1800 51 5000 29 2000 52 5500 27 1800
k lin n 46 4000 43 3400 33 2500 1 10 50 4800 40 3100
k lin p 14 500 28 10000 56 500000 23 5000 55 400000 28 10000
k path n 37 290 48 400 7 14 54 1000 48 400 41 330
k path p 35 270 48 400 5 12 54 1000 48 400 41 330
k ph n 10 10 8 16 24 90 3 6 21 75 15 45
k ph p 11 11 9 8 10 10 5 5 9 9 10 10
k poly n 39 600 34 500 30 36 540 44 720 20 220
k poly p 38 580 34 500 28 400 36 540 44 700 20 220
k t4p n 40 3500 24 1500 17 800 39 3000 45 6000 11 200
k t4p p 48 7500 49 8000 28 49 8000 53 12000 14 500

Table 2: Detailed benchmarking results on LWB

each modal level, the formulae originate from MQBF formulae with the same number
of propositional symbols, conjuncts and QBF quantifier depth. Formulae in the class
qbfS are the easiest, the total number of atomic subformulae is low and spread over a
wide range of modal levels, thereby reducing the possibility of inference steps between
the clauses in the layered normal form of these formulae. In contrast, in qbfMS formulae
almost all atomic subformulae occur at just one modal level. Here the layered normal
form can offer little advantage over a simpler normal form. But the number of atomic
subformulae is still low and KSP seems to derive an advantage from the fact that the
normal form ‘flattens’ the formula: KSP is at least two orders of magnitude faster than
any other prover on this class. The classes qbf and qbfL are more challenging. While
the atomic subformulae are more spread out over the modal levels than for qbfMS, at a
lot of these modal levels there are more atomic subformulae than in a qbfMS formula in
total. The layered modal translation is effective at reducing the number of inferences for
these classes, but more inference possibilities remain than for qbfMS. Finally, qbfML
combines the worst aspects of qbfL and qbfMS, the number of atomic subformulae is
higher than for any other class and there is a ‘peak’ at one particular modal level. This
is the only MQBF class containing formulae that KSP cannot solve.

Figure 3 shows the benchmarking results on the LWB and 3CNFK collections. On
the LWB collection KSP performs about as well as BDDTab, FaCT++ and InKreSAT,
while Spartacus performs best and the combination of the optimised functional trans-
lation with Vampire (OFT + Vampire) performs worst. Table 2 provides more detailed
results. For each prover it shows in the left column how many of the 56 formulae in a
class have been solved and in the right column the parameter value of the most diffi-
cult formula solved. For InKreSAT we are not reporting this parameter value for three
classes on which the prover’s runtime does not increase monotonically with the param-

8 Cláudia Nalon, Ullrich Hustadt, and Clare Dixon

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
S
ol
ve
d

LWB

BDDTab InKreSAT KSP (cord)
FaCT++ Spartacus OFT + Vampire

1/4 1/2 1 2 4 8 15 30 60 120 250 500 1000

100

200

300

400

500

600

700

800

900

1,000

CPU time in seconds

In
st
an
ce
s
S
ol
ve
d

3CNFK

BDDTab InKreSAT KSP (cord)
FaCT++ Spartacus OFT + Vampire

Fig. 3: Benchmarking results for LWB and 3CNFK

eter value but fluctuates instead. As is indicated, BDDTab and InKreSAT are the best
performing provers on one class each, OFT + Vampire on two, KSP on six, and Sparta-
cus on eight classes. A characteristic of the classes on which KSP performs best is again
that atomic subformulae are evenly spread over a wide range of modal levels.

It is worth pointing out that simplification alone is sufficient to detect that formulae
in k lin p are unsatisfiable. For k grz p, pure literal elimination can be used to reduce
all formulae in this class to the same simple formula; the same is true for k grz n and
k lin n. Thus, these classes are tests how effectively and efficiently, if at all, a prover
uses these techniques and Spartacus does best on these classes. Note that pure literal
elimination has been disabled in the cord configuration we have used for KSP. With it
KSP would perform better on k grz p and k grz n, but worse on other classes where this
simplification has no beneficial effects.

Finally, on the 3CNFK collection, InKreSAT is the best performing prover and KSP
the worst performing one. This should now not come as a surprise. For 3CNFK we
specifically restricted ourselves to formulae with low modal depth which in turn means
that the layered normal form has little positive effect.

6 Conclusions and Future Work

The evaluation indicates that KSP works well on problems with high modal depth where
the separation of modal layers can be exploited to improve the efficiency of reasoning.

As with all provers that provide a variety of strategies and optimisations, to get the
best performance for a particular formula or class of formulae it is important to choose
the right strategy and optimisations. KSP currently leaves that choice to the user and the
development of an “auto mode” in which the prover makes a choice of its own, based
on an analysis of the given formula, is future work.

The same applies to the transformation to the layered normal form. Again, KSP
offers a number of ways in which this can be done as well as a number of simplifica-
tions that can be applied during the process. It is clear that this affects the performance
of the prover, but we have yet to investigate the effects on the benchmark collections
introduced in this paper.

KSP: A resolution-based prover for multimodal K 9

References

1. C. Areces, R. Gennari, J. Heguiabehere, and M. D. Rijke. Tree-based heuristics in modal
theorem proving. In Proc. ECAI 2000, pages 199–203. IOS Press, 2000.

2. P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for the propositional
modal logics K, KT, S4. J. Autom. Reasoning, 24(3):297–317, 2000.

3. V. Goranko and S. Passy. Using the universal modality: gains and questions. Journal of
Logic and Computation, 2(1):5–30, 1992.

4. R. Goré, K. Olesen, and J. Thomson. Implementing tableau calculi using BDDs: BDDTab
system description. In Proc. IJCAR 2014, volume 8562 of LNCS, pages 337–343. Springer,
2014.

5. D. Götzmann, M. Kaminski, and G. Smolka. Spartacus: A tableau prover for hybrid logic.
Electr. Notes Theor. Comput. Sci., 262:127–139, 2010.

6. I. R. Horrocks, U. Hustadt, U. Sattler, and R. Schmidt. Computational modal logic. In
Handbook of Modal Logic, pages 181–245. Elsevier, 2006.

7. M. Kaminski and T. Tebbi. InKreSAT: Modal reasoning via incremental reduction to SAT.
In Proc. CADE-24, volume 7898 of LNAI, pages 436–442. Springer, 2013.

8. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In Proc. CAV2013,
volume 8044 of LNCS, pages 1–35. Springer, 2013.

9. F. Massacci and F. M. Donini. Design and results of TANCS-2000 non-classical (modal) sys-
tems comparison. In Proc. TABLEAUX 2000, volume 1847 of LNCS, pages 52–56. Springer,
2000.

10. W. W. McCune. OTTER 3.0 reference manual and guide, May 07 2007.
11. C. Nalon and C. Dixon. Anti-prenexing and prenexing for modal logics. In Proc. JELIA

2006, volume 4160 of LNCS, pages 333–345. Springer, 2006.
12. C. Nalon and C. Dixon. Clausal resolution for normal modal logics. J. Algorithms, 62:117–

134, 2007.
13. C. Nalon, U. Hustadt, and C. Dixon. A modal-layered resolution calculus for K. In Proc.

TABLEAUX 2015, volume 9323 of LNCS, pages 185–200. Springer, 2015.
14. C. Nalon, U. Hustadt, and C. Dixon. KSP: sources and benchmarks. http://www.cic.

unb.br/˜nalon/#software, 2016.
15. G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision procedures for the modal logic K.

Journal of Applied Non-Classical Logics, 16(1-2):169–208, 2006.
16. P. F. Patel-Schneider and R. Sebastiani. A new general method to generate random modal

formulae for testing decision procedures. J. Artif. Intell. Res. (JAIR), 18:351–389, 2003.
17. S. Schulz. Simple and efficient clause subsumption with feature vector indexing. In M. P.

Bonacina and M. E. Stickel, editors, Automated Reasoning and Mathematics, volume 7788
of LNCS, pages 45–67. Springer, 2013.

18. E. Spaan. Complexity of Modal Logics. PhD thesis, University of Amsterdam, 1993.
19. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System description. In

Proc. IJCAR 2006, volume 4130 of LNCS, pages 292–297. Springer, 2006.
20. L. Wos, G. Robinson, and D. Carson. Efficiency and Completeness of the Set of Support

Strategy in Theorem Proving. Journal of the ACM, 12:536–541, 1965.

http://www.cic.unb.br/~nalon/#software
http://www.cic.unb.br/~nalon/#software

	KSP: A resolution-based prover for multimodal K

