
Int J Game Theory
DOI 10.1007/s00182-011-0314-6

Program equilibrium—a program reasoning approach

Wiebe van der Hoek · Cees Witteveen ·
Michael Wooldridge

Received: 8 December 2010 / Accepted: 28 November 2011
© Springer-Verlag 2011

Abstract The concept of program equilibrium, introduced by Howard (Theory and
Decision 24(3):203–213, 1988) and further formalised by Tennenholtz (Game Econ
Behav 49:363–373, 2004), represents one of the most ingenious and potentially far-
reaching applications of ideas from computer science in game theory to date. The
basic idea is that a player in a game selects a strategy by entering a program, whose
behaviour may be conditioned on the programs submitted by other players. Thus, for
example, in the prisoner’s dilemma, a player can enter a program that says “If his
program is the same as mine, then I cooperate, otherwise I defect”. It can easily be
shown that if such programs are permitted, then rational cooperation is possible even in
the one-shot prisoner’s dilemma. In the original proposal of Tennenholtz, comparison
between programs was limited to syntactic comparison of program texts. While this
approach has some considerable advantages (not the least being computational and
semantic simplicity), it also has some important limitations. In this paper, we inves-
tigate an approach to program equilibrium in which richer conditions are allowed,
based on model checking—one of the most successful approaches to reasoning about
programs. We introduce a decision-tree model of strategies, which may be conditioned
on strategies of others. We then formulate and investigate a notion of “outcome” for
our setting, and investigate the complexity of reasoning about outcomes. We focus
on coherent outcomes: outcomes in which every decision by every player is justified
by the conditions in his program. We identify a condition under which there exist a
unique coherent outcome. We also compare our notion of (coherent) outcome with that
of (supported) semantics known from logic programming. We illustrate our approach
with many examples.

W. van der Hoek (B) · M. Wooldridge
Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
e-mail: wiebe.Van-Der-Hoek@liv.ac.uk

C. Witteveen
Department of Software Technology, TU Delft, Mekelweg 4, 2628 CD Delft, The Netherlands

123

W. van der Hoek et al.

Keywords Program equilibrium · Non-cooperative games · Repeated games ·
Logic programming · Programs as strategies · Equality of programs

JEL Classification C7 · C72 · C6 · C60 · C62

1 Introduction

It is well-known in the game theory literature that there is an important difference
between playing a game once and playing a game a number of times. The Nash equi-
libria of a repeated game will typically admit outcomes that are not simply iterations
of the Nash equilibria of the component game. Specifically, the Nash Folk Theo-
rems (Osborne and Rubinstein 1994, p. 143) tell us that every strategy profile leading
to players obtaining better than their min max payoff can be achieved in an infinitely
repeated game. The simple technical device used in the proof of Nash’s Folk Theorems
is a construction known as a trigger strategy, which can be understood as “punish-
ing” players that do not “cooperate”. Such punishment is possible in repeated games
because the players will meet each other again, and players can punish a deviant player
by enforcing that player’s min max payoff.

The Nash Folk Theorems are perhaps most famous in their application to the pris-
oner’s dilemma (see e.g., Axelrod 1984). The prisoner’s dilemma is troubling because
the dominant strategy equilibrium of the game (mutual defection) makes every player
strictly worse off than an alternative outcome (mutual cooperation). Given its impor-
tance and seemingly paradoxical nature, it is hardly surprising that many researchers
have attempted to “recover” cooperation from the prisoner’s dilemma—to try to find
some way of explaining how and why mutual cooperation can and should rationally
occur (see, e.g., Binmore 1994, 1998 for extensive references and critical discussion
on this topic). Repeated games, and the Nash Folk Theorems, provide a solution: in
the infinitely repeated prisoner’s dilemma, mutual cooperation forms an equilibrium.

In one-shot games, however, it seems that trigger strategies are not possible. The
problem is that each prisoner must commit to either cooperate or defect, whereas
intuitively, what each prisoner wants to do is make his commitment contingent on the
commitments of others. The difficulty, however, is making this precise. One interesting
way of doing this with computer programs was suggested by Howard (1988):

Replacing individuals by programs in real or imaginary situations seems to us
often to make a philosophical problem much clearer, and to illuminate some of
its essential features. (Howard 1988, p. 204).

The idea proposed forward by Howard is to trade in the assumption of rationality
of the players by the idea that opponents can in some sense “perceive the way their
opponents think”. They can do this because they are “given as data the computer pro-
gram of their opponent” (Howard 1988, p. 206).1 In 2004, Moshe Tennenholtz used a

1 What Howard in fact shows is that it is possible to have a computer program that “recognises itself”: he
presents a program in BASIC that prints “Same Program” if it is fed with a program identical to itself, and
“Different Program” otherwise.

123

Program equilibrium

similar idea to formalise the notion of a strategy that is contingent on the strategies of
others (Tennenholtz 2004). The basic idea in his approach is that a player in a game
selects a strategy by entering what we call a program strategy: a program whose
behaviour may be conditioned on the programs submitted by other players. Thus, for
example, in the prisoner’s dilemma, a player can enter a program strategy that intui-
tively says “If his program is the same as mine, then I cooperate, otherwise I defect”. It
can easily be shown that if such program strategies are permitted, then rational coop-
eration is possible in the one-shot prisoner’s dilemma. Tennenholtz proved a version
of Nash’s folk theorem for his program equilibrium setting.

In the original proposals of Howard (1988) and of Tennenholtz (2004), comparison
between program strategies was only considered as textual comparison, i.e., string
comparison of program strategy text. While this has the advantage of being compu-
tationally and semantically simple, as well as being straightforward to implement, it
does have some important limitations. Howard for instance notes that simply adding
a number of spaces to the program source code (which would not, in most program-
ming languages, imply that the program was different) would yield a player of a
different “type”. Given this consideration, it is very natural to consider the possibility
of richer comparisons between programs strategies; so that one can say “I’ll coop-
erate if his program has the same behaviour as mine”. This would condition behav-
iour on whether program strategies are semantically equal, rather than syntactically
equal. However, such an approach would be fraught with difficulties. For example, we
would have to define some appropriate notion of semantic equivalence, and such pro-
gram reasoning is mathematically rather complex. Moreover, in general, the problem
of checking whether two programs are semantically equivalent is easily seen to be
undecidable.

In this paper, we investigate an approach to program equilibrium in which richer
comparisons between program strategies are allowed, based on model checking (Clarke
et al. 2000)—one of the most successful practical approaches to reasoning about pro-
grams. We introduce a decision-tree model of strategies, which may be conditioned
on strategies of others. We then formulate and investigate a notion of “outcome” for
our setting. We show that, in the prisoner’s dilemma, for example, the approach per-
mits mutual cooperation as an outcome, while not requiring that program strategies
are syntactically equal (see our discussion in Sect. 4). With respect to formal results,
we investigate the complexity of reasoning about outcomes, and show that checking
the existence of outcomes is np-complete in general. Our approach is illustrated with
many examples.

2 Setting the scene

In his seminal proposal, Tennenholtz (2004) proposed the idea of players in a game
entering complex strategies expressed as programs that may be conditioned on the
program strategies of others. In Tennenholtz (2004), the conditions permitted on pro-
grams were restricted to be comparisons of program text; that is, comparing whether
the “source files” for two programs were the same. Using this scheme, Tennenholtz

123

W. van der Hoek et al.

proposed that a player in the prisoner’s dilemma game should enter a program strategy
as follows2:

IF HisProgram == MyProgram THEN
DO(COOPERATE);
ELSE
DO(DEFECT);
END-IF.

The intended meaning of this program strategy is straightforward: HisProgram is a
string variable containing the text of the other player’s program strategy, MyProgram
is a string variable containing the text of the program in which it is referred, DO(…)
indicates a commitment to choosing one of the available actions, and “==” denotes
the string comparison test. Now, suppose one player enters the program above: then
the other player can do no better than enter the same program, yielding the overall
outcome of mutual cooperation as an equilibrium.

This is a remarkably simple and intuitive result, and represents one of the most
compelling applications of ideas from computer science to game theory to date. It
makes precise the intuition that we discussed in the opening section, namely, the idea
of one player saying “I’ll cooperate if he will”, thereby conditioning his strategy on
the strategies of others. But the idea also raises a number of questions: How does the
choice of programming language affect the types of outcome that can be obtained?
What other types of equilibrium might be considered in such a setting? In this paper,
we focus on just one issue: how to reason about the behaviour of program strategies
within the program strategy language. A key problem is that the comparison His-
Program == MyProgram is very strict. It requires that the two programs have the
same source code, which is not the same as requiring that they are the same programs:
many different source code programs can define the same program. So, as a first mod-
ification of the basic idea, let us see if we can relax the requirement for syntactic
equivalence.

To make the discussion formal, we introduce some notation. Let Ag = {1, . . . , n}
denote the set of players in the game under consideration. Let Ac denote the set of
actions that may be performed by a player—in the prisoner’s dilemma, for example,
we have Ac = {c, d}. (For convenience, we are here assuming that all players have
available the same set of actions.) Next, let � = {π1, . . .} denote the set of possi-
ble program strategies; for the moment, we do not define exactly what these are, but
we will denote how to understand them shortly. Crucially, we distinguish a program
strategy from its syntactic representation in the strategy programming language. Let
L� = {�1, . . .} denote the set of possible strategy program texts, i.e., the set of “legal
source code files” for strategy programs. Notice that strategy program texts L� are
syntactic objects while strategy programs � are semantic objects. It is possible for
multiple source program texts to define the same program strategy. Now, a program
strategy for a player i in an n player game takes as input n program strategy texts, one

2 We will not here formally define the “program strategy language” used by Tennenholtz—the key features
should be easy to understand from the example.

123

Program equilibrium

for each player, (including its own program text), and produces as output an action.
Formally, we can understand such a program strategy for a player i ∈ Ag as a function:

πi : L� × · · · × L�
︸ ︷︷ ︸

n times

→ Ac.

The strategy for the prisoner’s dilemma can then be understood as follows:

πi (�i , � j) =
{

C if � j = �i

D otherwise.
(1)

Here, the test � j = �i is a purely syntactic comparison of the program texts �1 and �2.
Now suppose we have available a function [[. . .]], which gives the meaning or deno-

tation of a program text. Formally:

[[. . .]] : L� → �

that is to say:

[[. . .]] : L� → (L� × · · · × L�
︸ ︷︷ ︸

n times

→ Ac).

If the denotation function is available as a primitive in the strategy programming
language L� itself, then we might imagine writing a “semantic” equivalent of the
prisoner’s dilemma program strategy as follows:

IF [[HisProgram]] == [[MyProgram]] THEN
DO(COOPERATE);
ELSE
DO(DEFECT);
END-IF.

This results in the following strategy program πi for player i :

πi (�i , � j) =
{

c if [[� j]] = [[�i]]
d otherwise.

(2)

This seems to solve the problem of requiring syntactic equality of programs, but it
raises some problems of its own. It is, of course, unrealistic to have a denotation func-
tion of the type discussed above in a realistic programming language, and comparing
programs is equally unrealistic. So, what can we do instead? The idea we pursue in
this paper is to use simpler forms of program reasoning within the language, and
in particular, to allow programs to reason about each other’s behaviour using model
checking (Clarke et al. 2000). Model checking is an extremely successful technology
for analysing the behaviour of (typically finite state) systems and protocols by using
temporal logic. The basic idea is that the state transition graph of a system S can be
understood as a model MS for a temporal logic, and so checking whether the system

123

W. van der Hoek et al.

S satisfies a property ϕ expressed using the temporal logic amounts to evaluating the
model checking problem MS |� ϕ. Crucially, such evaluation can typically be done
much more efficiently than program reasoning of the kind suggested by (2), above. So,
suppose we allow our programs to reason about each other’s behaviour using model
checking. We might then imagine writing a program strategy such as the following3 :

IF HisProgram(MyProgram,HisProgram) |� DO(COOPERATE) THEN
DO(COOPERATE);
ELSE
DO(DEFECT);
END-IF.

Notice one important subtlety in this definition: when evaluating the behaviour of
HisProgram using the model checking query, the parameters MyProgram and
HisProgram are passed. This is because we need to understand how HisProgram
will behave when faced withMyProgram. The basic idea of the remainder of the paper
is to explore this idea in more detail; since using a “real” programming language would
lead to great technical complexity (and almost certainly high computational complex-
ity), we define a “simpler” strategy programming language—intuitively, based on
decision trees.

3 The formal framework

First, some preliminary definitions. We assume a set Ag = {1, . . . , n} of agents
(|Ag| = n, n > 0). Each agent i ∈ Ag has a repertoire Aci = {α1, . . . , αk} of actions
(moves) that it can perform. To keep the model simple, we will assume there are no
pre-conditions attached to actions: every one of an agent’s actions can be performed
in every situation. We do not require that action sets Aci are disjoint. We assume that
a “noop” action null is included in every action set.

3.1 Strategies

We now define strategies in our framework. Conventionally, a strategy is assumed to
be a kind of conditional plan, which defines how an agent is to act in every possible
circumstance. Typically, a strategy is modelled as a function that maps a history of the
system/game (which is thought as the past of the current moment) to a chosen action.
In our framework, inspired by the work of Tennenholtz (2004) as described above,
strategies have a rather different feel. Our strategies allow the behaviour of agents to
be mutually conditioned on each other; and in particular, we allow a strategy for agent
i to be conditioned on the past and future behaviour of other agents, allowing us to
naturally, explicitly, and formally define strategies along the lines of “I will cooperate
if he will”. The difficulty is making this idea precise, and in particular, in defining the
notion of a “sensible” outcome when we may have a circular chain of conditions on
agent behaviour (e.g., where i’s strategy is conditional on j’s strategy, and j’s strategy
is conditional on i’s strategy). We define the notion of a coherent outcome to capture

3 The notation used in this example intended to be suggestive only; don’t take it too seriously.

123

Program equilibrium

the notion of a reasonable outcome in such a setting, and investigate the properties of
coherent outcomes.

Technically, strategies in our framework look very much like decision trees, with
an unusual kind of condition on transitions. More formally, a strategy is a binary tree4

in which vertices are labelled with actions and transitions/edges in the tree are labelled
with transition guards. A transition guard is a predicate on the behaviour of agents in
the system. Suppose an edge (s, s′) in the strategy tree for agent i is labelled with a
transition guard �, and s′ is labelled with the action α. Then any outcome in which
(s, s′) appears must satisfy �; and thus any outcome i.e., path in the strategy tree, in
which i performs α in s′ must satisfy�. The condition� is not just a predicate on the
past behaviour of agents in the system: it may also refer to their future behaviour. The
transition guard � may in fact also refer to the behaviour of the agent i itself, giving
strategies a somewhat self-referential flavour.

We formally define the language for transition guards later, but for now, it suffices
to note that LC will denote the set of formulae of the language, and that the language
contains the usual Boolean connectives (∧,∨,¬, . . .) with classical semantics. We
write � ≡ � to mean that �,� ∈ LC are equivalent—again, this notion will be
formally defined later, but the formulation is relatively conventional.

Formally, a strategy σi for agent i ∈ Ag is a structure:

σi = 〈Si , Ri , s0
i ,Ci , Li 〉

where:

• Si is a (finite, non-empty) set of strategy states;
• Ri ⊆ Si × Si is a binary transition relation on Si ;
• s0

i ∈ Si is the initial state;
• Ci : Ri → LC labels each edge in Ri with a transition guard;
• Li : Si → Aci associates an action with each state;

such that:

• (Si , Ri) forms a complete binary tree with root node s0
i ;

• Li (s0
i) = null;

• for any s′ �= s′′, if {(s, s′), (s, s′′)} ⊆ Ri then Ci (s, s′) ≡ ¬Ci (s, s′′).

The final condition ensures that branching in the tree has an “if…then…else…”
form. For this reason, we often write the transition guard on the second outgoing edge
of a node as “else”, understanding that it is the negation of the condition on the first
outgoing edge.

Let leaves(σi) denote the set of leaf nodes of σi .

4 The decision to restrict strategies to binary decision trees means that we cannot directly represent multi-
way selections in our strategies. This restriction greatly simplifies the constraints that strategies are required
to satisfy, and the subsequent technical presentation. The binary tree assumption is not an essential part of
our framework; it just makes the exposition simpler.

123

W. van der Hoek et al.

3.2 Encounters and outcomes

An encounter captures the idea of a collection of agents meeting, each with a strategy,
conditioned on the strategies of others. Formally, an encounter is a structure:

E = 〈Ag, Ac1, . . . , Acn, σ1, . . . , σn〉

with components as previously discussed; we will require that all strategies have the
same length. Our goal is now to define what we mean by the “outcome” of a such an
encounter. We start with the notion of an individual outcome. An individual outcome
for an agent i ∈ Ag is simply a path through i’s strategy tree, starting from the initial
state si

0 and ending in a leaf node. Formally, an individual outcome ωi for i ∈ Ag with
strategy σi is a sequence of states

ωi = (s0
i , . . . , sk

i)

such that:

• s0
i is the initial state of σi ;

• sk
i ∈ leaves(σi); and

• ∀ j ∈ N s.t. 0 ≤ j ≤ k − 1, (s j
i , s j+1

i) ∈ Ri .

When it is clear from the context whose strategies we are talking about, or when
the agent is not relevant, we will also write ω for the outcome and s0, s1, . . . for
the states. Let |ωi | denote the length of ωi . We denote the element of ωi at position
u ∈ N, (0 ≤ u < |ωi |) by ωi [u]. Thus ωi [0] is the initial state of ωi , and ωi [|ωi | − 1]
is the final state. Let �i denote the set of individual outcomes for i (over E).

A collective outcome � = 〈ω1, . . . , ωn〉 is then simply a tuple of such individual
outcomes, one for each agent i ∈ Ag. Let �E denote the set of collective outcomes
for encounter E . Notice that the definition of a collective outcome says nothing about
whether an outcome is “reasonable” or not; we address this issue later.

Example 1 (Strategic game form, Prisoner’s Dilemma) Strategic games are a simple
yet important class of games. In a simplest setting, we have two agents, A = {1, 2},
each with two actions, Aci = {ai , bi }. To represent such a game, see the table on the
left hand side of Fig. 1, where o1 is the collective outcome, or state, that is the result
of 1 doing a1 while 2 chooses a2, etc.

An instance of such a strategic game is obtained in the Prisoner’s Dilemma. Here,
two prisoners face the choice of either cooperating with the other prisoner (ci), or
defecting (di), when interrogated separately about a suspected crime. We assume
the reader is familiar with the details of this example, see for instance Osborne and
Rubinstein (1994, Example 16.2) or the book (Axelrod 1984).

Fig. 1 An abstract two-player
strategic game (left) and the
Prisoner’s Dilemma as an
instance (right)

123

Program equilibrium

Fig. 2 Strategy for i for the one-shot P D (left) and for the 2-round P D (right)

The strategies for player i in our framework may be depicted as in Fig. 2 (left).
Here,�i is a formula from our transition guard language LC to be introduced shortly.

The individual outcomes for agent 1 of the strategy depicted above are (s0
1 , s1

1)

(the agent plays a1) and (s0
1 , s2

1) (he plays b1). An example of a collective outcome is
〈(s1

0 , s1
1), (s

2
0 , s2

1)〉 (1 plays a1 and 2 plays a2). We will sometimes write 〈(a1), (a2)〉
for such an outcome, thereby identifying a state and the action performed in the state.
There are four collective outcomes possible in total.

Example 2 (Iterated Prisoner’s Dilemma) As the name suggests, in the Iterated Pris-
oner’s Dilemma (IPD), players play the PD game a number of times. A strategy for
a two-round PD is as shown in Fig. 2 (right). Note that the actions available after
each round are the same, but the conditions to play them (�1,�2,�3) or not, may be
different.

An example of a collective outcome in this game is ω = 〈(s0
1 , s1

1 , s4
1), (s

0
2 , s2

2 , s5
2)〉,

which we will also write as 〈(c1, d2), (d1, c2)〉. It corresponds to 1 playing first c and
then d, and 2 playing first d and then c.

Example 3 (Extensive game forms) An example of a game in extensive form is given
below: again, we have two players (1 and 2), and this time Ac1 = {L , R} and Ac2 =
{l, r}. In the two games below, player 1 plays first, and once he is finished, player 2
makes a move. Then, the game is finished. In the game on the left, if player 1 plays
L and then 2 chooses r , the game ends in outcome o2. A concrete instance of this
outcome is given on the right: 4 for player 1, and 2 for player 2.

1

2 2

7
1

4
2

3
8

6
5

L R

l r l r

1

2 2

o1 o2 o3 o4

L R

l r l r

123

W. van der Hoek et al.

One possible way to model the strategies for players 1 (left) and 2 (right) for this
game is as in the figure below (the reader may want to revisit this after having read
Sect. 3.3). Note how the guards in both strategies are the same: in node s0

2 of agent
2’s strategy for example, by imposing �1 as a guard, it is in fact agent 1’s decision to
which node s1

2 or s2
2 , both labelled null, we are proceeding. (Alternatively, we could

have replaced the guard�1 by the condition (1 : �do(L)): see Sect. 3.4 for what this
means.)

3.3 A logic for individual outcomes

Recall that earlier, we mentioned the logic LC , which is used for transition guards in
strategies. We can now reveal exactly what LC is: it is a logic for expressing properties
of collective outcomes � . To define LC , we first define a logic LI for expressing
the properties of individual outcomes. LI is in fact a linear temporal logic with tense
modalities for referring to the past and future (Emerson 1990). The primitive oper-
ators of LI are of the form do(α), with the fairly obvious interpretation “action α
is performed”. These operators are combined with the classical Boolean connectives
(∧,∨,¬, . . .), and with the future-time tense operators “ �” (next), “♦” (eventually),
and “ ” (always), as well as the past-time counterparts of these operators, �,♦• , .
The syntax of LI is defined by the following grammar:

ϕ ::= do(α) | ¬ϕ | ϕ ∨ ϕ | �ϕ | �ϕ | ♦ϕ | ♦• ϕ.
where α ∈ Ac1 ∪· · ·∪ Acn . The remaining Boolean connectives are defined as abbre-
viations in the usual way. The “always” and “heretofore” operators are defined as the
duals of the diamond operators:

ϕ =̂ ¬♦¬ϕ ϕ =̂ ¬♦• ¬ϕ.

Formulae of LI are interpreted with respect to a strategy σi , an individual outcome
ωi ∈ �i , and a temporal index u ∈ N, via the satisfaction relation |�I :

σi , ωi , u |�I do(α) iff L(ωi [u]) = α

σi , ωi , u |�I ¬ϕ iff not σi , ωi , u |�I ϕ
σi , ωi , u |�I ϕ ∨ ψ iff σi , ωi , u |�I ϕ or σi , ωi , u |�I ψ
σi , ωi , u |�I �ϕ iff u > 0 & σi , ωi , u − 1 |�I ϕ
σi , ωi , u |�I �ϕ iff u < |ωi | − 1 & σi , ωi , u + 1 |�I ϕ

123

Program equilibrium

σi , ωi , u |�I ♦ϕ iff ∃v ∈ N, u ≤ v < |ωi | s.t. σi , ωi , v |�I ϕ
σi , ωi , u |�I ♦• ϕ iff ∃v ∈ N, 0 ≤ v ≤ u s.t. σi , ωi , v |�I ϕ

Note that ♦ϕ in fact means “now, or sometime in the future’. We can define “sometime
in the (real) future” as �♦ϕ. Similarly for � (“always in the real future”), �♦•
(“sometime in the real past”) and � (“always in the real future”). Next, define a
nullary predicate start = ¬ ��. It is easily seen that start marks the beginning of
time: it is only true when u = 0. (Although we did not explicitly define �, one might
take � = do(α) ∨ ¬do(α), for a given action symbol α.)

3.4 A logic for collective outcomes

We now extend LI to the language LC that will be used for transition guards. Formulae
of LC express properties of collective outcomes. Primitive expressions of LC are of
the form (i : ϕ), where i ∈ Ag and ϕ ∈ LI , meaning that the individual outcome ωi

for agent i satisfies ϕ. Note that transition guards for a player’s strategy can therefore
refer to past, current and future actions of other players and of the player itself. These
expressions are combined with the classical Boolean connectives ∧,∨,¬, The
syntax of formulae of LC is thus given by the following grammar:

� ::= (i : ϕ) | ¬� | � ∨�

where i ∈ Ag and ϕ ∈ LI . The semantics of the language are defined with respect to
the satisfaction relation “|�C”, where a formula� of LC is interpreted in an encounter
E = 〈Ag, Ac1, . . . , Acn, σ1, . . . , σn〉, a collective outcome ϕ and a temporal index
u ∈ N, using the interpretation of formulas ϕ ∈ LI in an individual strategy σi , an
individual outcome ϕ ∈ �i and the same index u ∈ N:

E,�, u |�C (i : ϕ) iff σi , ωi , u |�I ϕ
E,�, u |�C ¬� iff not E,�, u |�C �
E,�, u |�C � ∨� iff E,�, u |�C � or E,�, u |�C �

We again assume the remaining Boolean connectives are defined as abbreviations. We
say a formula � ∈ LC is satisfiable if E,�, u |�C � for some E,�, u, and valid
if E,�, u |�C � for all E,�, u; we indicate that � is valid by writing |�C �. If
|�C � ↔ � then we say that � and � are equivalent.

Example (1, continued) Let us focus on the prisoner’s dilemma. By taking� = � we
get the strategy ci in PD, while � = ⊥ gives di . For i any of the agents, let ı denote
the other agent. Now consider � = (ı : �do(cı)). This strategy for i says that i will
cooperate iff ı does. Note that nothing prevents an agent to condition his choices on
his own choices, so for instance a condition � = (i : �do(di)) in the PD would
correspond with a strategy in which i would cooperate if and only if he defects! Of
course, we need to formally explain what such a strategy “means”, which we will do
shortly, when we define the notion of coherent outcome.

123

W. van der Hoek et al.

Example (2, continued) When specifying strategies in the iterated PD, we can make
full use of the temporal operators. For instance, a well known strategy in this game is
the following. It is based on the following simple decision (also known as reciprocal
altruism in biology):

Tit- for- Tat: if my opponent cooperated in the previous move, then that is
what I do now, if however he defected, I will defect as well.

Of course the strategy should also prescribe what to do in the first round. Let us
suppose the strategy starts with a cooperative move. Then the tit- for- tat strategy
with initial cooperate move can be given as follows: label every transition to any state
labeled with ci with the guard:

start ∨ (ı : do(cı)) (3)

(and consequently, label all other transitions with “else”’.) In a case like this, we say
that the strategy is such that all ci actions are conditioned on (3).

The strategy Copy- Now would merely be the game where i will do exactly what
ı will do: the guard for ci -transitions would simply be (ı : �do(cı)).

The following strategy is less forgiving than Tit- for- Tat:

Grim- Trigger: I will cooperate, but if my opponent defects, I will defect as
well, and never cooperate again.

(Notice that this is a trigger strategy, as discussed in the context of Nash Folk
Theorems in Sect. 1.)

In the following, it is easier to specify ¬�, i.e., the guard for playing di . For Grim-
Trigger the guard for playing di would be:

(ı : ♦• do(dı)) (4)

Forgiving usually relates to events that happened in the past, but nothing prevents
agent i from conditioning his di actions on what ı does now, or even in the future:

(ı : ♦• do(dı)) ∨ (ı : ♦do(dı)) (5)

The strategy that conditions di on (5) prescribes the following.

Unforgiving- Ever: I will defect if my opponent ever defects — be it in the
past, now, or in the future

Of course there are many variants of this: a strategy that defects if the opponent
defected the previous k rounds, for example (also known as Tit- for- k- Tats):

(ı : (do(dı) ∧ �(do(dı) ∧ · · · ∧ �(do(dı) ∧ �do(dı))
︸ ︷︷ ︸

k−1 times

. . .))) (6)

or whenever the opponent defected k times in the past

(ı : ♦• (do(dı) ∧ �♦• (do(dı) ∧ · · · ∧ �♦• (do(dı) ∧ �♦• do(dı))
︸ ︷︷ ︸

k−1 times

. . .))) (7)

Example 4 (Multiple player games) Let us briefly look at games where the number
of players is n. There are many strategies that one can think of in such situation. For

123

Program equilibrium

Fig. 3 A PD strategy for i ,
starting with a number of
ci -moves, and ending with
di -moves

instance, agent i could condition an action ai on the majority (if any) choosing that
action (now, or in the previous move, or if a was the most popular action chosen thus
far). Another condition for action ai might be that everybody choose a, etc.

3.5 A more general set-up

We have already mentioned the assumption that players have two moves available at
every node. We should emphasise that there is no technical reason for this constraint:
it was made for simplicity of exposition. Note that we made another assumption about
our strategies, namely that (1) they consist of finitely many states and (2) can be rep-
resented as a binary tree. This implies that we can only implement only finite games.

It would not be difficult to relax one of the requirements (1) and (2). Without giving
the complete details, an example of a strategy for i in the PD under a more liberal
regime is given in Fig. 3. This strategy for player i is such that i first plays a number
of ci -moves, until we reach a point where � is true, after which i only defects. If the
condition� is chosen to be (ı : ♦• do(dı)), the strategy obtained is exactly grim trig-
ger. Player i starts with cooperate, then keeps on cooperating as long as ı : ♦• (do(dı)

(the other player has defected) becomes true, and from then on, i only defects. Let us
call such strategies binary: they are graphs, with one state s0 with in-degree(s0) = 0
(the starting state) and for all states s, 1 ≤ out-degree(s) ≤ 2 (there are at most two
alternatives). Moreover, edges are labeled: if there are two outgoing edges from s,
then their labels �1 and �2 are such that �1 ∨�2 is a tautology, if there is only one
outgoing edge, the label � = �.

The notion of an outcome ωi can easily be extended for strategies that are repre-
sented by such graphs: an outcome is an infinite sequence of states, some of which
may appear infinitely often. Allowing such outcomes would have the advantage that
the temporal operators would be interpreted on more “standard” models for temporal
logic, where models usually represent an infinite stream of time. Technically speaking,
�� is a validity in temporal logic (there is always a next state) where it is not in

our strategies as defined in Sect. 3.2. Using the graphs (rather than finite binary trees)
to represent strategies would naturally pave the way to represent infinite games, of
which the strategy of Fig. 3 is in fact an example. Taking � = (ı : cı), it is not hard
to see for instance, that if such a strategy were to play against itself, the two coherent
outcomes would be those in which both players either always cooperate, or cooperate
once and then always defect. So this would yield an example of an infinite game that
has a finite representation using our graphs. However, like with using machines, there
are strategies however that cannot be represented by a finite graph: as an example,
consider the strategy that says “I start with cooperate, and continue to cooperate: how-
ever, every defect-move by my opponent will be replied to with two defects on my

123

W. van der Hoek et al.

Fig. 4 A machine for the PD strategy in which i cooperates until ı has defected 3 times

behalf’. Such a strategy would entail that if the opponent ı starts with n defect moves
and from then on always cooperates, player i would need to respond with 2n defect
moves. But remembering to play 2n defect moves requires 2n different states, which
is impossible to do for all n if we only have a finite graph.

Consider the strategy of Fig. 3 again. If one takes as the condition for playing di , that
is for ¬� the formula (ı : ♦• (do(dı)∧ �♦• (do(dı)∧ �♦• (do(dı))))) for example, the
strategy amounts to the one where i will cooperate until ı has defected 3 times (see (7)).
One can also implement such a strategy using the machines as introduced in Osborne
and Rubinstein (1994, Sect. 8.4). Such an implementation is given in Fig. 4. In the four
states of that machine for grim trigger, following Osborne and Rubinstein (1994)
we denote the name si of the state, and then the action taken (di in s3, and ci in the
other states). The transitions are labeled with guards, which in the case of machines,
are sets of strategy profiles: (·, cı) for instance denotes the set {(ci , cı), (di , cı)}. In
our notation, this would correspond with the condition ı : �do(cı)). So, guards of
a machine only refer to the “current” profiles, there is no reference to past or future
actions. This implies that we can represent any strategy that is represented as a machine
as a program in our framework.

Using a machine, one can also encode at least some past behaviour of other agents
in the states though: in Fig. 4 for instance, the state sn represents the fact that thus far,
ı has defected n times. Thus representing the strategy (7) as a machine will take k + 1
states if i is willing to allow ı to defect k times (those states are needed to count the
number of defect-moves by ı), whereas in our graph representation, any strategy for i
that allows ı to defect k times before i plays defect, could be represented in the graph
of Fig. 3: the counting will be done in the guard �! It is not directly clear how for
instance a condition for playing an action that refers to the future (like (ı : ♦do(dı))
could be represented using machines. We leave the exact formal connection between
machines and our programs for future research.

4 Coherent outcomes

Suppose we are given an encounter E . How are we to identify the “reasonable” col-
lective outcomes of E? The key concept we define is the notion of a coherent out-
come. A coherent outcome is one in which every transition guard on every transition in
every individual outcome is satisfied; and thus all the mutually conditioned constraints
imposed by agents are satisfied. In other words, every action a player takes is justified
by the guard in his strategy labelling that choice. So coherence is not a notion of
rationality in the sense that it does not refer to the utilities or preferences in the game.

123

Program equilibrium

Formally, if � = 〈ω1, . . . , ωn〉 ∈ �E then � is said to be coherent if it satisfies
the following condition:

∀i ∈ Ag, ∀u ∈ N s.t. 0 ≤ u < |ωi | − 1, E,�, u |�C Ci (ωi [u], ωi [u + 1]).

Intuitively, a coherent outcome is an outcome where each individual action of a
player does not occur without a reason: the guard on the transition leading to the
action is satisfied. In other words, an encounter is coherent if every condition for
doing an action along a path, is true. Given an encounter E , let coh(E) denote the set
of coherent outcomes of E .

The proof of the following theorem is given in the example immediately follow-
ing it.

Theorem 1 1. There exist encounters E such that coh(E) = ∅.
2. There exist encounters E such that |coh(E)| = 1.
3. There exist encounters E such that |coh(E)| > 1.

Example (1, continued) Let us look at the one shot PD game explained earlier. Recall
that a strategy for player i looks like the tree in Fig. 2 (left). Let the condition for doing
ci for each agent i be �i . We will give instances of the conditions �i such that the
resulting encounter has 0, 1, 2, 3, or 4 coherent outcomes.

1. We first give an encounter that has no coherent outcomes. Let �1 = (1 :
�do(d1)), i.e., player 1’s program says that he will cooperate if and only if

he will defect. Irrespective of 2’s program, there is no coherent outcome. To see
this, consider the two possible outcomes for 1: ωa

1 = (s0
1 , s1

1) (i.e., 1 cooperates)
and ωb

1 = (s0
1 , s2

1) (he defects). Let ω2 be an arbitrary outcome of player 2. Now
first consider ωa = 〈ωa

1 , ω2〉. Note that in this case C1(s0
1 , s1

1) = �do(d1), the
condition for 1 to play c1 is to play d1. However, in the resulting encounter Ea , we
have Ea, ωa, 0 |� ¬ �do(d1): we assume that in ωa

1 , player 1 cooperates. Sim-
ilarly, if we combine ωb

1 with an arbitrary ω2, the condition C1(s0
1 , s2

1) becomes
¬ �do(d1), but in the encounter Eb, this condition is false in Eb, 〈ωb

1, ω2〉, 0.
2. Now suppose �1,�2 ∈ {�,⊥}. Each combination of such guards gives rise to

one coherent outcome: the four combinations in total account for the table at the
right-hand-side of Fig. 1. More specifically, consider �1 = � and �2 = ⊥ then
the only coherent outcome is 〈(s0

1 , s1
1), (s

0
2 , s2

2)〉 (this corresponds to the outcome
(c1, d2), with payoffs (0,5), in our example): similarly for the other choices for
conditions from {�,⊥}. So here, every strategy with�1 taken from {�,⊥} gives
rise to exactly one coherent outcome.

3. Suppose �1 = �. If �2 = (1 : �do(c1)), we get the coherent outcome
〈(s0

1 , s1
1), (s

0
2 , s1

2)〉 (both players cooperate: 〈c1, c2〉). If�2 = (2 : �do(c2)) then
there are two coherent outcomes, corresponding to the action profiles 〈c1, c2〉 and
〈c1, d2〉. Now, suppose �1 = (2 : �do(c2) (“I cooperate if he cooperates”). If
�2 = (1 : �do(c1)) then the two coherent outcomes correspond to the action
profiles 〈c1, c2〉 and 〈d1, d2〉. Intuitively, this makes sense, and note that the read-
ing of each strategy in fact is “I cooperate iff he cooperates”: if my opponent
cooperates, I will as well (this is outcome 〈c1, c2〉, and if my opponent defeats,

123

W. van der Hoek et al.

I will as well (〈d1, d2〉). One might suggest to make the condition for coopera-
tion even “more conditional”, to something like: “I will cooperate iff given that
I cooperate, he cooperates as well”. It is not difficult to see that if both agents
adopt �i = ((i : �ci) → (ı : �cı), the coherent outcomes remain 〈c1, c2〉 and
〈d1, d2〉.

4. An example of an encounter where we have three coherent outcomes is one in
which �1 = (1 : �do(c1)) ∧ (2 : �do(c2)) (1 cooperates iff both cooperate)
and �2 = ¬((1 : �do(d1)) ∧ (2 : �do(d2))) (2 defects iff both defect). The
coherent outcomes correspond to the plays (c1, c2), (d1, c2) and (d1, d2).

5. Suppose �1 = (1 : �do(c1)). If �2 = (2 : �do(c2)), then all possible collec-
tive strategies are coherent: If agent i plays ci , it is “justified” by the condition
�i , and if i plays di , it is justified by the alternative ¬�i .

Notice that the example above in which �1 = (2 : �do(c2) and �2 = (1 :
�do(c1)) illustrates the straightforward encoding of Tennenholtz’s program for the

prisoner’s dilemma in our setting. Notice that this case permits 〈c1, c2〉 as a coher-
ent outcome, as announced in our introduction. As in Tennenholtz’s setting, mutual
cooperation is a coherent outcome, and if �i = (ı : �do(cı)) then agent i cannot
suffer the “suckers payoff”, where i cooperates and ı defects. However, the benefit of
our approach is that we are no longer reliant on the syntactic form of the strategy; for
example if player 2 used the syntactically different, but semantically equivalent condi-
tion �2 = ¬(1 : �¬do(c1)), then the result would be the same: mutual cooperation
remains a coherent outcome. Also notice that�1 = (2 : �do(c2) indeed represents a
conditional commitment: even though 〈d1, d2〉 is one of the two coherent outcomes if
�2 = (1 : �do(c1)), under any joint strategy under which player 2 plays c2, player
1 will play c1.

The fact that there are encounters with no, or with more than one coherent outcome
is a natural phenomenon using our programs as strategies: sometimes there is no way
to coherently combine several programs (take for instance �1 = (2 : �do(c2) and
�2 = (1 : �do(d1)) in the PD game), or even one program on itself can be the source
of incoherency (see the fist item in the example above). Moreover, it may happen that
there are alternative ways to combine the programs into a coherent outcome. This need
not be an objection to our notion of coherent outcome, in a similar way as the fact
that one can have no, one, or similar Nash equilibria in classical game theory does not
make that solution concept inappropriate.

Example (2, continued) Suppose prisoner 1 plays Tit- for- Tat. If 2 plays this as
well, a coherent outcome is one in which both prisoners cooperate, all along the game.
This is also the only coherent outcome: if a prisoner would defect, this is not justified
by the condition (3). If prisoner 2 plays Grim- Trigger, the unique coherent outcome
is the same and this also holds when 2 plays Unforgiving- Ever (5). Suppose now
1 is of type Tit- for- TAT, while 2 is like that, but he starts with a defecting move:

¬start ∨ (1 : do(c1)) (8)

In this case, the coherent outcome is the one in which 1 plays c1 in every odd round
and d1 in every even round, while 2 plays d2 in odd rounds and c2 in even rounds.

123

Program equilibrium

Let us now drop the assumption that a prisoner plays Tit- for- Tat. Assuming that
both prisoners use Grim- Trigger, the coherent outcomes are again plays in which
only ci is used. In general, when 2 uses Grim- Trigger coherent outcomes are plays
of length n such that 2 and 1 play k times ci , 2 plays d2 at step k + 1 while 1 still
plays c1, and from k + 1 on, 2 only plays d2 (what 1 will do in the game from k + 1
on, depends on his strategy). If 1 plays Tit- for- Tat or Grim- Trigger, k = n, the
length of the game.

If one player is of type Grim- Trigger while the other is Unforgiving- Ever,
again the only coherent outcome is the one in which only players cooperate. If 1 is of
type Grim- Trigger while 2 if of type Unforgiving- Ever, however, there are two
coherent outcomes: the one in which only cooperation is played, and the one in which
1 uses c1 as a first move, while other moves of both players are d.

Example (3, continued) Let us look at strategies for the game in extensive form of
this example. Take the strategies for agents 1 and 2 again, depicted in the following
figure (agent 1’s strategy is depicted left, that of 2 is on the right).

First of all, we adopt the convention that if an edge has an outgoing arc labelled
�, then we do not need to represent the alternative outgoing edge (so, Ri is strictly
speaking not binary any longer, but it is easy to add a non-significant node with a
transition to it, one that will never be taken).

By choosing

� = ((1 : do(L)) ∧�2) ∨ ((1 : do(R)) ∧�3)

one sees that this representation is “equivalent”, in a sense we won’t make precise, to
the one represented earlier, in Sect. 2. By putting additional constraints on � (like,
it cannot refer to any 1 : do(α)), we can model games with imperfect information,
where the choice of player 2 is not supposed to depend on that of player 1. We leave
these notions as issues of further research (but see also Sect. 4.1).

So what are coherent outcomes in this game, represented by the figure above?
Let us in this example reason about such coherent outcomes using the payoffs of
the game, although the two notions are orthogonal (see Sect. 4, first paragraph). Let
us first assume agent 2 only cares about his own payoff: � = (1 : do(R)). For
agent 1, let us first assume that he knows that 2 is rational: � = ⊥. The result-
ing encounter has one coherent outcome 〈(t0

1 , t2
1 , t4

1), (t
0
2 , t1

2 , t2
2)〉, in which agent 1

obtains 3, and agent 2 obtains 8 (see Example 3 for the associated payoffs). Next,
suppose � = ¬((1 : �do(L)) → (2 : � �do(r))) (“I play R iff playing L would
imply that would 2 answer with playing r”). Now there are two coherent outcomes:
〈(t0

1 , t1
1 , t3

1), (t
0
2 , t1

2 , t3
2)〉 corresponding to 1 playing L , and 2 playing r , and the second

123

W. van der Hoek et al.

coherent outcome being 〈(t0
1 , t2

1 , t4
1), (t

0
2 , t1

2 , t2
2)〉, corresponding to 1 playing R and 2

playing l.
Are there conditions such that the game has three coherent outcomes? Yes, take for

instance � = (1 : do(L)) ∧ (2 : �do(l)): player 2 only plays l if both players play
“left”. This leads to the coherent outcomes corresponding to the plays (L , l), (L , r)
and (R, r). Finally, it is easy to see that for � = (1 : do(L)) and � = (2 : do(l)) all
four possible outcomes are coherent.

Example (4, continued) We briefly revisit the example with several players. Suppose
each agent can do two actions (or votes), say yes and no. We specify the condition�i

leading to the yes node. Suppose for every i ,

�i = Alli =
∧

j

(j : �do(yes))

(“I vote yes iff everybody does”.) Then the only coherent outcomes are those in which
voting happens unanimously: either all vote “yes”, or all vote “no”. (Let us call this set
of (two) collective strategies U .) To see this, note that in any other collective outcome,
there is a “yes” vote and a “no” vote. Then the agent i voting yes does not satisfy his
condition Alli to do so. How about

�i = All-Otheri =
∧

j �=i

(j : �do(yes))

(“I vote yes iff everybody else does”.) Certainly, the global outcome in which every-
body votes yes is coherent. In fact, everybody using All-Otheri again leads to the set
U of coherent outcomes. U is also obtained if �i = Somei = ∨

j (j : �do(yes))
and Some-Otheri = ∨

j �=i (j : �do(yes)). Suppose n is odd, say n + 1 = 2 · k, then
we can define

�i = Maji =
jx �= jy
∨

j1,... jk

x=k
∧

x=1

(jx : �do(yes))

(“I vote yes iff a majority does”). Maybe surprisingly, the coherent outcomes are again
those in U . Let us finally assume that not all agents use the same condition. Suppose
n + 1 = 2k, and the first k agents use Alli and the remaining k − 1 agents use Maji .
Again the coherent set is U . However, if we assume the first k agents use Maji and the
remaining k1 agents use Alli , the coherent set consists U together with the collective
outcome in which exactly the first k agents vote yes.

Having motivated and established our formal framework, an obvious question is
the extent to which this formal framework is practical, and in particular, the extent
to which, given an encounter E , we can answer questions relating to the set coh(E)
of coherent outcomes. Such questions are the domain of computational complexity
theory (Papadimitriou 1994). A first natural question is whether, given an encounter
E and an outcome � , we have � ∈ coh(E), i.e., the question of checking whether

123

Program equilibrium

� is a coherent outcome of E . In fact, this problem is easily seen to be decidable in
polynomial time, through dynamic programming.

So, consider the decision problem Non- Empty Coherent Set, in which we are
given an encounter E , and asked whether or not coh(E) �= ∅. In contrast to checking
whether a particular outcome is coherent, this problem is computationally hard.

Theorem 2 Non- Empty Coherent Set is np-complete.

Proof Membership is by “guess-and-check”. For hardness, we reduce Sat. Given a
Sat instance χ over Boolean variables x1, . . . , xk , which we assume w.l.o.g. is in
cnf, we construct an encounter Eχ as follows. For each Boolean variable xi , create
an agent i with Aci = {xi , null}, and define σi to be:

Then create an agent z with Acz = {null, α}. Construct an LC formula χ ′ by trans-
forming the Sat instance χ as follows: systematically substitute for each positive
literal xi the LC expression (i : �do(xi)), and for each negative literal ¬x substitute
(i : �do(null)). Now σz to be:

We claim that coh(Eχ) �= ∅ iff the χ is satisfiable. (⇐) Assume coh(Eχ) �= ∅.
Now, consider agent z. First, notice that the individual outcome (s0

z , s1
z) cannot be

in any coherent outcome, since this would require that in the next state agent z does
α, whereas in fact it does null. So, the individual outcome for z contained in the
coherent outcome must be (s0

z , s2
z), and hence the collective outcome must satisfy

¬(¬χ ′ ∧ (z : �do(α))) = ¬¬χ ′ ∨ ¬(z : �do(α)) = (z : �do(α)) → χ ′. Since
the L(s2

z) = α this implies that the antecedent of this condition is satisfied, hence
the collective outcome must satisfy χ ′. This immediately implies that χ is satisfi-
able. (⇒) Assume χ is satisfiable. Then let X ⊆ {x1, . . . , xk} be the set of variables
made true under some satisfying assignment for χ . We construct a coherent outcome
�χ(ω1, . . . , ωn) for Eχ as follows. First, for each agent i corresponding to variable
xi , if xi ∈ X then ωi = (s0

i , s1
i), while if xi �∈ X then ωi = (s0

i , s2
i). Finally, set

ωz = (s0
z , s2

z). We claim that the outcome �χ thus constructed is coherent. The only

123

W. van der Hoek et al.

non-obvious part is for the individual outcome ωz : here the point is that the construc-
tion of the formula χ ′ and outcomes for variable agents 1, . . . , k are such that the
outcomes for 1, . . . , k will satisfy χ ′, ensuring that the guard on the transition (s0

z , s2
z)

is satisfied. ��
Notice that in the proof of Theorem 2, the encounter Eχ that we construct for χ is
such that coh(Eχ) contains outcomes that are in a one-to-one correspondence with
satisfying assignments for χ . We may thus conclude:

Corollary 1 Given an encounter E, the problem of computing |coh(E)| is #p-
complete.

4.1 Non-determinacy

Let us call an encounter E deterministic if |coh(E)| = 1, i.e., there is exactly one
coherent outcome. An obvious question is whether we can, given the strategies (and
in particular the guards that occur in them), predict whether an encounter is determin-
istic or not. The examples in the previous section suggest that an encounter allows for
more than one coherent outcome, or lack any such outcome, if the actions of some
player i depend somehow on his future actions, or if they depend on other agents’
actions, which, in turn, depend on the choices of player i . We will now formalise the
existence of such cycles and show that, if such cycles do not exist, determinism of E
is guaranteed.

We define some auxiliary notions. Take an encounter E = 〈Ag, Ac1, . . . , Acn, σ1,

. . . , σn〉. Given a state s in a strategy σi , let the time τ(s) of a state be the distance to
the root s0

i . If τ(s) > 0, let �(s) be the guard on the edge (s′, s). A decision point
is an agent-time pair (i, t). We now want to formalise a dependency relation DE on
decision points, where the intuitive meaning of DE (i ′, t ′)(i, t) is that “the decision
of i at time t depends on the decision of i ′ at time t ′”, or, ”i ′ needs to decide at t ′
before i can decide at t”. We will, for a given point (i, t), collect such dependencies
in a function �E , where �E (i, t) = {(i ′, t ′) | DE (i ′, t ′)(i, t)} collects the decision
points that i depends on, at time t . To start with, define �E (i, 0) = {}: at time t = 0,
we assume all agents take the action null and this does not depend on anything else.
For t > 0, define �E (i, t) = ∪{s∈σi |τ(s)=t}δE (i, s,�(s)), where

δE (i, s,�(s)) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

δE (i, s, �) if �(s) = ¬�
δE (i, s, �1) ∪ δE (i, s, �i) if �(s) = �1 ∨�2
dE (j, {τ(s)− 1}, ϕ) if �(s) = (j : ϕ)
{} if �(s) = �

The function dE (i, T, ϕ) takes an agent i , a set of time points T and an individual
outcome formula ϕ. Before defining it, consider the following encounter based on the
two-shot P D denoted in Fig. 2 (right). Suppose �1

1 = � and �1
2 = (1 : ♦c1) ∧ (2 :

do(null)), i.e., 1 plays c1 and 2 conditions his choice for c2 on 1 ever going to play c1
and 2 having played null. We then get�E (1, 1) = δE (1, s1

1 ,�
1
1)∪ δE (1, s2

1 ,¬�1
1) =

{}. Moreover, �E (2, 1) = δE (2, s1
2 ,�

1
2) ∪ δE (2, s2

2 ,¬�1
2) = dE (1, {0},♦do(c1)) ∪

123

Program equilibrium

Fig. 5 Two encounters

dE (2, {0}, do(null)). One would expect dE (2, {0}, do(null)) to be {(2, 0)}: whether
2 will chose null at t = 0 depends on what 2 choses at t = 0. Moreover, whether
1 makes ♦do(c1) true at t = 0 depends on what 1 choses at t = 0, t = 1 and
t = 2, which in turn may depend on �E (i, t)(t ≤ 2), i.e., the decision points that
1 depends on, at those time points. I.e., we will find that dE (1, {0},♦do(c1)) =
{(1, 0)}, (1, 1), (1, 2)} ∪0≤t≤2 �E (1, t). Formally, dE is defined as follows:

dE (i, T, ϕ) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{(i, t) | t ∈ T } ∪t∈T �E (i, t) if ϕ = do(α)
dE (i, T, ψ) if ϕ = ¬ψ
dE (i, T, ψ1) ∪ dE (i, T, ψ2) if ϕ = ψ1 ∨ ψ2
dE (i, {t − 1 | t ∈ T }, ψ) if ϕ = �ψ & t > 0
dE (i, {t + 1 | t ∈ T }, ψ) if ϕ = �ψ & t <| σ |
dE (i, {t ′ | t ≤ t ′ ≤| σ |}, ψ) if ϕ = ♦ψ
dE (i, {t ′ | 0 ≤ t ′ ≤ t}, ψ) if ϕ = ♦• ψ

Given a strategy profile σ , call i’s strategy a-cyclic if for all states s ∈ σi with
τ(s) = t , there is no pair (i, t ′) ∈ δ(σ, i, s) for which t ′ > t .

Example 5 Consider the encounters depicted in Fig. 5. Suppose �1 = �,�2 = (2 :
do(b1)) and �3 = (2 : do(b2)).

1. For our first encounter E , put�1 = ⊥, �2 = (1 : do(a1)) and�3 = (1 : do(a2)).
We get δE (1, s1

1 ,�1) = δE (1, s1
2 ,¬�1) = {}: what 1 does at s1

1 and s1
2 does not

depend on any agents’ choices. Hence�E (1, 1) = {}, and likewise�E (2, 1) = {}.
Next, we compute �E (1, 2). δE (1, s1

3 ,�2) = δE (1, s1
4 ,¬�2) = dE (2, {1},

do(b1)) = {(2, 1)} ∪ �E (2, 1) = {(2, 1)} ∪ δE (2, s2
1 , �1) ∪ δE (2, s2

2 ,¬�1).
The guard �1 for s2

1 is ⊥ so that the latter union reduces to {(2, 1)}. In words:
what 1 does at state s1

3 or s1
4 , depends only on what 2 does at t = 1. Likewise,

δE (1, s1
5 ,�3) = δE (1, s1

6 ,¬�3) = {(2, 1)} so that �E (1, 2) = {(2, 1)}. The
complete dependency graph for this encounter is given in Fig. 6 (left).

2. Now assume E is obtained by setting �1 = ⊥, �2 = (1 : �(do(a3) ∨ do(a5))

and �3 = (1 : �do(a2)).
Again, we have �E (1, 1) = �E (2, 1) = {} and �E (1, 2) = {(2, 1)}. We

123

W. van der Hoek et al.

Fig. 6 Dependency graphs for Example 5

Fig. 7 Dependency graph for
Example 6

finally compute �E (2, 2) = δE (2, s2
3 , �2) ∪ δE (2, s2

4 ,¬�2) ∪ δE (2, s2
5 , �3) ∪

δE (2, s2
6 ,¬�3). We have δE (2, s2

3 , �2) = δE (2, s2
4 ,¬�2) = dE (1, {1}, �(do

(a3 ∨ do(a5))) = {(2, 2)} ∪ �E (1, 2) = {(2, 2), (1, 2)}. We also get
δE (2, s2

5 , �3) = δE (2, s2
6 ,¬�3) = {(2, 2), (1, 2)}. The dependency graph for

this encounter is given in Fig. 6 (right).

Example 6 Consider the encounter E based on Fig. 5 for which �1 = (1 :
� �do(a3) ∧ 2 : � �do(b3), �2 = � and �1 = (1 : do(null), �2 = (2 :

♦• do(b2)) and �3 = �. We leave it to the reader to verify that this gives rise to the
dependency graph of Fig. 7.

Proposition 1 Let E be an encounter with an acyclic dependency graph. Then:
|coh(E)| = 1.

Proof The argument is standard when having a Directed Acyclic Graph (DAG) for
dependencies. Start with the decision nodes (i ′, t ′) without incoming arrows: such
nodes exist in any finite DAG. The guards in the strategies that correspond to these
nodes (that is, the states si ′ in strategy ωi ′ for which τ(si ′ = t ′) do not depend on
any other decision points, so they can be evaluated as either true or false, and hence
the actions corresponding to those states can be determined. Next, visit the decision
points (i, t) for which DE (i ′, t ′)(i, t): this time, the actions in states si of strategies ωi

with τ(si) = t can be determined. This process will terminate and visit all decision
points, and it generates a unique outcome that is coherent. ��

The following consequence confirms one’s intuition that if players only choose
unconditionally (the guard is � or ⊥) or respond to what happened in the past, the
encounter is deterministic.

Corollary 2 Let E be an encounter in which all guards use only �, ⊥ and formulas
in which every occurrence of do(α) is in the scope of past time operators �and ♦• .
Then |coh(E)| = 1.

123

Program equilibrium

One can use our dependency graph also to define notions of imperfect information:
for instance, a graph without arrows from any decision point (i, t) to any point (j, t ′)
would mean that agent j cannot refer to any of agent i’s actions. We leave a further
exploration of such issues for future work.

5 Logic programming semantics

Intuitively, a coherent outcome is an outcome where each individual action of a player
does not occur without a reason: the guard on the transition leading to the action is
always satisfied. Hence, we could say that the satisfaction of such a guard � pro-
vides an argument for choosing this action do(a). Then it is only one step further
to consider the combination of a guard leading to an action as a rule � → do(a)
whose antecedent has to be fulfilled in order for the consequent to occur. Thus, the
coherent outcome semantics can be considered as providing an intuitive semantics of
an encounter conceived as such a set of rules.

In the computer science community, logic programming (Apt 1990; Lloyd 1987)
has provided us with a rich variety of semantics capturing various intuitive interpre-
tations of such rule systems. Nowadays, the so-called answer set semantics (Ferraris
and Lifschitz 2005) is considered as the dominant semantics in logic programming
capturing the intuitive meaning of a logic program. This immediately raises the ques-
tion how the various logic programming semantics, and the answer set semantics in
particular, are related to our coherent outcome semantics.

Thus, in order to place the coherent outcome semantics in a broader perspective,
first we will relate encounters as defined earlier with logic programs. Next, we use the
ideas underlying the coherent outcome semantics for encounters to identify a seman-
tics for logic programs derived from encounters. Then we investigate whether this
“coherent model” semantics can be used to provide an intuitively acceptable seman-
tics for these logic programs, taking into account the supported model semantics, the
minimal model semantics and the answer set semantics.

5.1 From encounters to logic programs

We will use predicates state(i, X, t) to indicate a possible state for an agent i at
time t , where X is a variable indicating the state history. Assume a fixed enumera-
tion < Si > of states in Si . The initial state of i is denoted by state(i,<>, 0), and,
proceeding inductively, whenever for a state s at time t , denoted by state(i, X, t), we
have (s, s′), (s, s′′) ∈ Ri , where s′ occurs before s′′ in < Si >, then s′ is denoted by
state(i, X.0, t + 1) and s′′ by state(i, X.1, t + 1). As an example, take the encounter
on the left of Fig. 5. Let the enumeration of the states simply be s0

1 , s1
1 , s2

1 , s3
1 , s4

1 , s5
1 , s6

1 .
The predicate state(1, 〈1.0〉, 2) represents the state s5

1 in that encounter: it is at depth
2, and the history 1.0 indicates that at time 0, the state which is higher in the enu-
meration was chosen (i.e., s2

1 , rather than s1
1 , and at time 1, the history indicates that

the state lower down the enumeration was chosen (i.e., s5
1 , rather than s6

1). Likewise,
state(1, 0.0, 2) represents the state s3

1 (the history indicates that twice the state that
occurs earlier in the enumeration was chosen).

123

W. van der Hoek et al.

Given an individual outcome ωi = 〈s0
i , . . . , sk−1

i 〉 we use state predicates and
atomic predicates does(i, a, t) to associate a k-run ri = ri (ωi) with it, where

ri = {state(i,<>, 0), does(i, a0, 0), state(i, X1, 1), does(i, a1, 1), . . . ,
state(i, Xk−1, k − 1), does(i, ak−1, k − 1)}

such that for 0 ≤ t < k, state(i, Xt , t) denotes st
i and at = Li (st

i), i.e., at ∈ Aci is
the action that agent i takes at time t in ωi .

The set of atoms for our logic programs for encounters of depth k is the set At E
k =

{state(i, X, t) | i ∈ Ag, X ∈ {0, 1}t , t < k} ∪ {does(i, a, t) | i ∈ Ag, a ∈ Aci , 0 ≤
t < k}. An interpretation for a logic program is a subset I of At E

k . Ifω = 〈ω1, . . . , ωn〉
is a collective outcome of an encounter E , then we say that the interpretation Iω asso-
ciated with ω is Iω = r1(ω1) ∪ · · · ∪ rn(ωn).

Let L = L(AgE
k) be the language built from atoms in At E

k using Boolean con-
nectives. Given a strategy profile σ , and u ∈ N, define a translation t on guards
from LI such that t (u,�) ∈ L as follows. If � is a guard occurring at depth u
in a strategy for some agent, its translation will be denoted by t (u,�). First of all,
t (u,�1∧�2) = t (u,�1)∧t (u,�2), while t (u,¬�) = ¬t (u, ß�). Also t (u,�) = �
and t (u,⊥) = ⊥. Finally, t (u, (i : ϕ)) = T (u, i, ϕ), where (the translation for the past
time operators is similar):

T (u, i, do(α) = does(i, α, u)
T (u, i, �ϕ) = T (u + 1, i, ϕ)
T (u, i,♦ϕ) = T (u, i, ϕ) ∨ T (u + 1, i, ϕ) ∨ · · · ∨ T (k − 1, i, ϕ)

Example 7 Consider the 2-round Prisoner’s Dilemma from Fig. 2 (right). Suppose we
have �1 = (2 : ♦(do : c2), �2 = ¬((1 : do(c1)) ∧ (2 : do(d2))). Then the formula
ϕ1 associated with�1 is does(2, c2, 0)∨does(2, c2, 1)∨does(2, c2, 2). The formula
ϕ2 is ¬(does(1, c1, 1) ∧ does(2, d2, 1)).

Given an encounter E of depth k, and a strategy σi in E , a logic program P E
σi

for
agent i is a set of rules, such that

1. for t = 0 the program contains exactly one rule

� → state(i,<>, 0),

2. for every 0 < t < k there are exactly two rules of the form5

state(i, X, t), t (t, ϕ) → state(i, X.0, t + 1), does(i, ai , t)

state(i, X, t),¬t (t, ϕ) → state(i, X.1, t + 1), does(i, bi , t)

5 Strictly speaking, in an extended logical program we only allow a conjunction of literals to occur in the
body of the rules. Therefore, for each ϕ, if ϕ is ψ1 ∨ · · · ∨ ψk in disjunctive normal form, then each rule
ϕ → p should be interpreted as a set of rules {ψ j → p | 1 ≤ j ≤ k)}. Moreover, usually, in such a program
we only allow one literal to occur in the head of a rule. To simplify notation, however, here we also allow a
conjunction of literals p1, p2, . . . , pk to occur in the head of a rule. Each such a rule ϕ → p1, p2, . . . , pk
then should be interpreted as a set of rules {ϕ → pi | 1 ≤ j ≤ k)}.

123

Program equilibrium

whenever
(a) there is a state s, denoted by state(i, X, t), occurring at depth t and there

are states s′ and s′′, denoted by state(i, X.0, t +1) and state(i, X.1, t +1),
respectively, occurring at depth t + 1;

(b) {(s, s′), (s, s′′)} ⊆ Ri , Ci (s, s′) = ϕ, and Ci (s, s′′) = ¬ϕ;
(c) Li (s′) = ai and Li (s′′) = bi .

If σ = 〈σ1, . . . , σn〉 is the strategy profile for the encounter E and P E
σi

is the logic
program associated with σi , then P E = P E

σ1
∪ · · · ∪ P E

σn
is called the logic program

associated with the encounter E .

Example 8 Let E denote the k-round Prisoner’s dilemma, and consider the program
P E = P E

σ1
∪ P E

σ2
where σi is the strategy tit for tat for player i with cooperative

first move:

� → state(1,<>, 0)

state(1,<>, 0),� → state(1,< 1 >, t), does(1, c1, 1)

state(1, X, t), does(2, c2, t) → state(1, X.0, t + 1), does(1, c1, t + 1)

state(1, X, t),¬does(2, c2, t) → state(1, X.1, t + 1), does(1, d1, t + 1)

� → state(2,<>, 0)

state(2,<>, 0), → state(2,< 1 >, t), does(2, c2, 1)

state(2, X, t), does(1, c1, t) → state(2, X.0, t + 1), does(2, c2, t + 1)

state(2, X, t),¬does(1, c1, t) → state(2, X.1, t), does(2, d2, t + 1)

Here, t is a variable taking values t = 1, 2, . . . , k − 2.

We say that an interpretation I ⊆ AtG
k satisfies a formula ϕ over At E

k , denoted by
I |� ϕ, if the truth assignment τI defined by

τI (p) =
{

1 if p ∈ I ,
0 else

(9)

satisfies ϕ. Note that such an assignment is well-defined since I is a subset of positive
literals over AtG

k .
Our first result is an easy consequence of the preceding discussion relating outcomes

ω of an encounter E to interpretations Iω for P E :

Lemma 1 Let E be an encounter of depth k, ω be an outcome in E and Iω = r1(ω1)∪
· · · ∪ rn(ωn). Then, for 0 ≤ u < k and � ∈ LI , it holds that E, ω, u |�C � iff
Iω |� t (u,�).

Since we are not primarily interested in outcomes in general, but in coherent out-
comes of an encounter, we now investigate which requirements should hold for inter-
pretations Iω of a logic program P E in order to correspond to coherent outcomes ω.

123

W. van der Hoek et al.

5.2 From coherent outcomes of encounters to coherent models of programs

Since a logic program P is a set of rules, in order to be acceptable, an interpretation I
for P should respect the program rules. That is, whenever an interpretation I satisfies
the condition part (antecedent) ϕ of a rule ϕ → p1, . . . , pk, I should satisfy the all
consequents pi as well. More precisely, let P be a logic program over a set of atoms6

At . A model M of a logic program P is an interpretation M ⊆ At such that M satisfies
all the rules in P , i.e. for every rule ϕ → p1, . . . , pk of P , if M |� ϕ then for all
i = 1, . . . , k, pi ∈ M .

The following proposition is an easy consequence of the construction of P E :

Proposition 2 Let E be an encounter of depth k and ω an outcome in E. Then Iω is
a model of P E .

It is easy to see that not every model M of a program P E corresponds to an outcome
of the corresponding encounter E . For example, take the tit-for-tat program discussed
in Example 8. A possible model for this program is the model

M = {state(i,<>, 0) | i = 1, 2} ∪
{state(i, Xt , t), does(i, ci , t), does(i, di , t) : i = 1, 2, t ≥ 1, Xt ∈ {0, 1}t }

Clearly, such a model does not satisfy the requirements we have for coherent outcomes
of the corresponding encounter E : for every i and t there should occur a unique atom
does(i, a, t) and a unique atom state(i, X, t) in M and both should be supported by
a rule

state(i, X, t − 1), ϕ → state(i, X ′, t), does(i, a, t)

occurring in P E . Therefore, arbitrary models of logic programs do not capture the
idea of a (coherent) outcome.

Obviously, the reason for this lack of correspondence is that we did not include the
second requirement for coherency: no consequent of a rule should be considered as
true without being supported by some rule. Therefore, let us call an interpretation I
of a program P E derived from an encounter E coherent if the following conditions
do hold:

1. I is a model of P E ;
2. if c ∈ I then there is a reason for it, i.e. there exists a rule ψ → p1, . . . , pk in

P E such that c = p j for some j = 1, . . . , k and I |� ψ .

We call such an interpretation a coherent model of P E . To show that these intuitions
behind coherency are justified, we now prove that there exists an exact correspondence
between the set of coherent outcomes of an encounter E and the set of coherent models
of the associated logic program P E :

Theorem 3 Let E be an encounter, and P E its associated logic program. Then the
following holds:

6 Such a set is known to be the Herbrand base of the program.

123

Program equilibrium

1. if ω is a coherent outcome of E then Iω is a coherent model of P E .
2. if M is a coherent model of P E , then there exists a coherent outcome ω such that

M = Mω.

Proof (1) Let ω be a coherent outcome for the strategy profile σ . We show that
Iω is a coherent model of P E . First of all, since ω is an outcome, by Propo-
sition 2, Iω is a model of P E . To show that Iω is coherent, consider an arbi-
trary i ∈ Ag and 0 < t < k and let ωi [t − 1] = σ t−1

i and ωi [t] = σ t
i .

Let Li (σ
t
i) = a and Ci (σ

t−1
i , σ t

i) = �. Then, by construction of Iω, there
exist atoms state(i, Xt−1, t − 1) and does(i, a, t), state(i, Xt , t) ∈ Iω and,
since E, ω, t − 1 |� �, by Lemma 1, we have Iω |� t (t − 1,�). Hence, by
construction of P E , there exists a rule state(i, Xt−1, t − 1), t (t − 1,�) →
state(i, Xt , t), does(i, a, t) where state(i, Xt , t), does(i, a, t) ∈ Iω and Iω |�
state(i, Xt−1, t − 1) ∧ t (t − 1,�). Hence, Iω is a coherent model of P E .

(2) Assume that M is a coherent model of P E . First, we will show that there exists
an outcome ω of E such that M = Mω.

In order to represent an outcome ω, it should hold that, for every i , the set Mi

satisfies

Mi = {state(i, Xm,m), does(i, a,m) | state(i, Xm,m), does(i, a,m) ∈ M}
= {state(i,<>, 0), does(i, a0, 0), state(i, X1, 1), does(i, a1, 1), . . . ,

state(i, Xk−1, k − 1), does(i, ak−1, k − 1)}

That is, for every i, Mi represents a run ri (ωi) i.e., for every 1 ≤ m< k, does(i, am,m),
does(i, a′

m,m) ∈ Mi implies am = a′
m and state(i, Xm,m), state(i, X ′

m,m) ∈ Mi

implies Xm = X ′
m .

We prove by contradiction that for every i this property holds. So, assume that there
exists an i such that Mi does not represent a k-run ωi . Then (i) there exists a smallest
1 ≤ m < k such that for some a �= b, does(i, a,m) and does(i, b,m) occur in Mi

or for some Xm �= Ym, state(i, Xm,m) and state(i,Ym,m) occur in Mi or (ii) there
exists a smallest 1 ≤ m < k such that for no a, does(i, a,m) occurs in M or for no
X ∈ {0, 1}m, state(i, X,m) occurs in M .

Suppose (i) holds, and without loss of generality we assume that state(i, X,m)
and state(i,Y,m) occur in M . Since M is a coherent model of P E , it follows
that state(i, X,m), does(i, a,m) and state(i,Y,m), does(i, a,m) are the heads
of the unique rules state(i, X ′,m − 1), ϕ → state(i, X,m), does(i, a,m) and
state(i, X ′′,m − 1), ψ → state(i,Y,m), does(i, a,m), respectively, in P E such
that M |� ϕ and M |� ψ . But then, by construction of P E , we must have X ′ = X ′′
and ψ ≡ ¬ϕ, implying that M |� ϕ and M |� ¬ϕ; contradiction.

Therefore, (ii) must hold. Again, without loss of generality assume that for no
a, does(i, a,m) occurs in M . Then, by construction of P E , for some state(i, X,m −
1) ∈ M and a, b ∈ Aci , there are two rules state(i, X,m − 1), ϕ →
state(i, X.0,m), does(i, a,m) and state(i, X,m − 1),¬ϕ → state(i, X.1,m),
does(i, b,m) in P E . Since M is a model, M |� state(i, X,m−1) and either M |�ϕ or
M |�¬ϕ, it follows that either does(i, a, t) or does(i, b, t) occurs in M ; contradiction.

123

W. van der Hoek et al.

So neither (i) nor (ii) can hold and therefore no such an i can exist, implying that
for every i, Mi represents a k-run ωi . Hence, there exists an outcome ω of E such that
M = Mω.

Finally, we have to show that the outcome ω is a coherent outcome. So suppose ωi

occurs in ω. Since M = Mω, Mi = ri (ωi) and for every m < k there exists a unique
pair of atoms state(i, Xm,m), does(i, a,m) ∈ M . By construction of P E ,

1. there exists a guard � in the strategy σi as a label for some (sm−1
i , sm

i) where sm
i

is of depth m and Li (sm
i) = a,

2. state(i, Xm−1,m − 1) represents σm−1
i , and state(i, Xm,m) represents σm

i ,
3. state(i, Xm−1,m − 1), ϕ → state(i, Xm,m), does(i, a,m) occurs in P E , and
4. ϕ = t (m,�).

We have to show that E, ω,m |�C �. Note that state(i, Xm−1,m − 1), ϕ →
state(i, Xm,m), does(i, a,m) is a unique rule in P E supporting state(i, Xm,m),
does(i, a,m). Hence, since M contains state(i, Xm,m) as well as does(i, a,m) and
M is coherent, it follows that M |� ϕ. Hence, by Lemma 1, E, ω,m |�C �. Therefore,
ω is a coherent outcome. ��
Example 9 Consider the tit-for-tat program we discussed before in Example 8.

This program has a unique coherent model {state(i,<>, 0), state(i, 1.0t−1, t),
does(i, ci , t) : i = 1, 2, t ≥ 1}.
Example 10 Consider now two programs based on the “I will cooperate if he will
cooperate” principle:

� → state(1,<>, 0) (10)

state(1, X, t − 1), does(2, c2, t) → state(1, X.0, t), does(1, c1, t) (11)

state(1, X, t − 1),¬does(2, c2, t) → state(1, X.1, t), does(1, d1, t) (12)

� → state(2,<>, 0) (13)

state(2, X, t − 1), does(1, c1, t) → state(2, X.0, t), does(2, c2, t) (14)

state(2, X, t − 1),¬does(1, c1, t) → state(2, X.1, t), does(2, d2, t) (15)

Here, 1 ≤ t ≤ k−1. This program has 2k−1 supported models: For every 1 ≤ t ≤ k−1,
either both does(1, c1, t) and does(2, c2, t) or both does(1, d1, t) and does(2, d2, t)
are contained in a coherent model M .

5.3 Properties of coherent models for programs

A common opinion in logic programming semantics (see e.g. Gelfond 2008) is that
any acceptable model of a program P should (i) respect the rules of the program and
(ii) should not consider anything true if it is not necessary to do so.

While (i) clearly implies that any acceptable model should be a model of the pro-
gram, (ii) implies (among others) that an acceptable model should be a minimal model
of P . That is, M is an acceptable model if there does not exist a model M ′ of P such
that the set of positive literals occurring in M ′ is strictly contained in M .

123

Program equilibrium

This might imply that coherent models of P do not always constitute acceptable
models of a program: Coherent models as we have defined them are known in the logic
programming community as supported models (Fitting 2002) and, in general, sup-
ported models do not need to be minimal. For example, take the program P = {a → b}.
This program has two coherent models: M1 = ∅ and M2 = {a, b}. Clearly, M2 is not
minimal.

Although this property (supported models are not always minimal models) is true
w.r.t. the class of all possible logic programs, we will show that, due to the special
form of the programs P E derived from encounters E , coherent models of programs
P E are always minimal models.

Lemma 2 Let P E be a program derived from an encounter E. Then every coherent
model M of P E is a minimal7 model of P E .

Proof On the contrary, let us assume that M is a coherent model of P E and M is
non-minimal. Then there exists a model M ′ of P E such that M ′ is strictly included in
M . Hence, M − M ′ �= ∅. Therefore, there exists a smallest8 t > 0 and an i , such that
does(i, a, t) �∈ M ′. The line of reasoning for state(i, X, t) is completely analogous.

Since does(i, x, t) occurs in M and M is coherent, there are rules9 state(i, X, t −
1), ϕ → does(i, x, t) and state(i, X, t − 1),¬ϕ → does(i, y, t) in P E and M |� ϕ.

Since M ′ is a model, state(i, X, t − 1) ∈ M ′ and does(i, x, t) �∈ M ′, M ′ �|� ϕ.
Hence, M ′ |� ¬ϕ. But that implies that does(i, y, t) ∈ M ′ ⊆ M and therefore both
does(i, y, t) as well as does(i, x, t) occur in M . But then M |� ϕ and M |� ¬ϕ;
hence M cannot be a model of P E ; contradiction10. Therefore, M must be a minimal
model. ��

Hence, every coherent outcome ω of an encounter E corresponds to a minimal and
supported model Mω of P E .

5.4 Answer set semantics and coherent models

The answer set semantics of a logic program P can be considered as the most rigorous
interpretation of the two rules underlying the notion of an acceptable interpretation of
a program P: any such an interpretation should (i) respect the rules of the program
and (ii) should not consider anything true if it is not necessary to do so. Similarly, ¬ϕ
is true in J iff ϕ is false in J, ¬ϕ is false in J iff ϕ is true in J and ¬ϕ is unknown
in J iff ϕ is unknown in J . For disjunctions ϕ = ϕ1 ∨ ϕ2 it holds that ϕ is true in J
if at least one of ϕ1 or ϕ2 is true in J, ϕ is false in J if both ϕi are false in J , and ϕ
is undefined, else. Finally, a partial interpretation J is said to satisfy a program rule
ϕ → p if p is true in J or ϕ is not true in J .

7 Models that are both supported and minimal also have been called positivistic models (Bidoit and Hull
1989).
8 Note that for all i, state(i, <>, 0) occurs in every model of P E .
9 Note that in the following ϕ might be equal to ¬ψ .
10 Remember that every interpretation is a subset of positive literals.

123

W. van der Hoek et al.

Now a partial interpretation J is said to be an answer set of a logic program11 P if
J is an inclusion minimal interpretation satisfying the rules of P .

Example 11 Let’s consider Example 10 once again. According to the answer set
semantics, there is a unique answer set J for this program: J = {state(i,<>, 0) |
i = 1, 2}, i.e. no positive literal over the atoms of the program is considered to be true,
except the atoms indicating the initial states. The reader should be able to verify that
indeed according to the definitions stated above, J satisfies every rule of this program
and that J is minimal. As a reason it is argued that no rational person adhering to the
principles for an acceptable interpretation of this program should have a necessary
reason for taking does(i, c1, t) and does(i, c2, t) to be true or have a necessary reason
for taking ¬does(i, c1, t) and ¬does(i, c2, t) to be true. Hence, all these literals are
undefined. Therefore, no consequent can be assumed to be true nor false and hence,
every literal is undefined, except for state(i,<>, 0).

Clearly, the answer set interpretation does not meet our intuitive interpretation of
the rules in the program rules derived from encounters. How can this mismatch be
explained? The answer is that since partial interpretations are also taken into account,
one essential assumption from encounters is lost: In encounters we assume that for
every player i and for every 0 ≤ t < k, it holds that exactly one action a is chosen
by i at time t . This assumption has to be explicitly encoded in a rule when dealing
with the answer set semantics. Hence, we have to make sure that every (acceptable)
interpretation of I , for every i and every t , satisfies exactly one element from the set
{does(i, a, t) | a ∈ Aci }.

Such interpretations can be enforced when dealing with partial interpretations,
if we add, for every player i , and for every 0 < t < k, an exclusive disjunctive
rule

� → does(i, a1, t)⊕ does(i, a2, t)⊕ · · · ⊕ does(i, an, t)

where Aci = {a1, a2, . . . , an}. Let us call the resulting programs containing these
exclusive disjunctions extended programs, denoted by P E +

.
Now it can be easily shown that answer sets for such extended programs P E +

one-to-one correspond to coherent models of P E +
:

Theorem 4 Let P E +
be an extended program for an encounter E of depth k. Then ω

is a coherent outcome of E iff Iω is an answer set of P E +
.

Proof By Theorem 3, ω is a coherent outcome of E iff Iω is a coherent model of P E .
So we only need to prove that Iω is a coherent model of P E iff Iω is an answer set of
P E +

.

(⇒). Let Iω be a coherent model of P E . Suppose that for some 1 ≤ i ≤ n there
exists a smallest 1 ≤ t ≤ k − 1 such that for no a ∈ Aci , does(i, a, t)
occurs in Iω or for no X ∈ {0, 1}t , state(i, X, t) occurs in Iω. By assumption,

11 Strictly speaking, we present here the definition of an answer set for programs without default negation.

123

Program equilibrium

state(i, Xt−1, t − 1) ∈ Iω and, by construction of P E , there are a, b ∈ Aci

such that state(i, Xt−1, t − 1), ϕ → state(i, Xt−1.0, t), does(i, a, t) and
state(i, Xt−1, t − 1),¬ϕ → state(i, Xt−1.1, t), does(i, b, t) occur in P E .
Since Iω is a model, we must have Iω �|� ϕ and Iω �|� ¬ϕ, contradicting the
fact that Iω is a complete interpretation. Hence, for every 1 ≤ t ≤ k − 1 and
1 ≤ i ≤ n there is at least one a ∈ Aci such that does(i, a, t) and at least one
X ∈ {0, 1}t such that state(i, X, t) occurs in Iω. Since Iω is coherent, it follows
immediately that there is exactly one such an a ∈ AtG

k such that does(i, a, t)
occurs in Iω and the same holds for state(i, X, t). Hence, Iω satisfies the exclu-
sive disjunction rules in P E +

, so Iω is a model of P E +
. This model is minimal

since it is a minimal model of the set of exclusive disjunctive rules of P E +
.

Therefore, Iω is an answer set of P E +
.

(⇐). Suppose Iω is an answer set of P E +
. Consider Iω as a complete interpreta-

tion. Since Iω satisfies all exclusive disjunctive rules of P E +
, Iω cannot be

empty. Suppose that Iω contains an unsupported positive literal does(i, a, t) or
state(i, X, t) for some smallest value of 1 ≤ t < k. This means that for the rule
state(i, Xt−1, t−1), ϕ → state(i, Xt , t), does(i, a, t) occurring in P E , M |�
state(i, Xt−1, t −1), but M �|� ϕ. Hence M |� ¬ϕ and M satisfies the anteced-
ent of the rule state(i, Xt−1, t − 1),¬ϕ → state(i, Xt , t), does(i, b, t). But
then M |� does(i, b, t) and since this literal is supported by a rule whose ante-
cedent is satisfied by M, a �= b. But then Iω violates an exclusive disjunction
rule; contradiction. Hence, Iω is a coherent model of P E . ��

5.5 Coherent outcomes and logic programming semantics: some conclusions

As we have seen, the coherent outcome semantics is based on the intuitive idea that an
outcome of an individual player always is based on a (local) reason: the guard on the
transition leading to the action is satisfied. Using a simple translation of encounters
into logic programs enabled us to transfer this principle to a guiding principle for
acceptable models for programs derived from such an encounter. As a consequence,
we showed that coherent models of programs derived from encounters are based on
an analogous principle: a model of a program P is coherent if it is a supported model
of P .

This idea of coherence as supportedness lacks an important feature of acceptable
models of logic programs: minimality, that is the idea that something is not considered
to be true unless it is strictly necessary to do so. We showed however that this idea
is somehow compiled into the form of the program P E derived from an encounter
E : as it turns out the special form of these programs guarantees that very supported
(coherent) model is a minimal model as well.

One of our implicit objectives was to show that coherent models of encounters
can be used to provide logic programs derived from encounters with an acceptable
semantics. Knowing that the answer set semantics is generally considered to be the
embodying of this intuitive idea, we finally compared our coherent models with answer
sets. As it turned out, in order to establish this correspondence we have to encode an
additional assumption taken for granted in our semantics of encounters that has to

123

W. van der Hoek et al.

be made explicit when using the answer set semantics: for every player at any time
exactly one action should be executed.

Hence, we conclude that

• first of all, the simple principles underlying our coherent semantics of encounters
can be used to provide logic programs associated with them with an intuitively
acceptable meaning;

• secondly, in comparing our semantics of encounters with a semantics of logic pro-
grams, one has not only to pay attention to a careful translation of the syntactical
elements, but also to the interplay between semantics and the translation;

• finally, in establishing a correspondence between semantics of systems in different
domains, we have to pay attention to assumptions that might be taken for granted
in the source domain but have to be made explicit in the target domain.

6 Related work and conclusions

As noted in the introduction, Howard was one of the first who considered the pos-
sibility of players being replaced by programs, and those programs inspecting each
other’s code. He in fact attributes the idea of games played by programs rather than
people to Axelrod (1980). Howard also points at some philosophical issues that can
be raised in such a setting. He argues that biologists have suggested that individuals
may cooperate in situations of conflict if (a) they recognise that the other player is a
close relative, or (b) if they recognise the other player as someone with whom they
are playing a sequence of games. The second possibility explains the interest in for
instance the repeated Prisoner’s Dilemma (Axelrod 1984), while the first possibil-
ity inspired (Howard 1988; Tennenholtz 2004) and the current paper. However, both
Howard (1988) and Tennenholtz (2004) interpret “close relative” in a very strict sense,
namely as “identical”. And as Howard rightly objects to this, “It might be objected
that if the two players have the same program they are effectively the same individ-
ual, and there is really no proper play of the PD after all”. We propose to replace the
requirement of “identical” by “producing a certain behaviour, given my behaviour”.

Several other authors have begun to consider aspects of program equilibria. Kalai
et al. (2010) abstract away from programs completely, and assume that each player has
a “mutually conditioned commitment device”. In this setting, they prove a “commit-
ment folk theorem”, analogous to the Nash folk theorem in iterated games (Osborne
and Rubinstein 1994, p. 143). Fortnow (2009) considered the idea of playing a game
over time, and used a Turing machine model of program strategies, proving a gen-
eralised version of the folk theorem. Peters and Szentes (2008) consider the issue of
“definable contracts”; their idea is to use a Gödel numbering scheme for program
strategies, so that a program strategy can intuitively say “I’ll cooperate if his Gödel
number is the same as mine”.

One interesting conceptual point is the relationship between our notion of a coher-
ent outcome, and the notion of a solution concept in game theory. Put crudely, a game
theoretic solution concept identifies, for every game, a set of possible outcomes of
the game; if we think of the solution concept as capturing some notion of rational
choice, then the outcomes that a solution concept identifies in this way are the rational

123

Program equilibrium

outcomes of the game. A typical concern in solution concepts is to identify “fixed
points” of the game: outcomes that are stable against rational defection. Thus, in
non-cooperative game theory, Nash equilibrium captures stability against unilateral
deviation, while in cooperative game theory, the core captures stability against coa-
litional deviation. In the present paper, our notion of a coherent outcome can also
be understood as in one sense capturing a notion of stable outcome. However, our
coherent outcomes are not linked in any way with utility; the coherent outcomes of
an encounter are simply the outcomes that are mutually consistent with each player’s
program strategies. In this sense, our notion of a coherent outcome is quite distinct
from, and prior to, the notion of a game theoretic solution concept.

In future work, it would be interesting to consider in more detail issues such as
richer, more intuitive programming languages, and the questions of what kinds of dif-
ferent equilibrium might be defined, and how the choice of languages affects the ability
to reach such equilibria. It would also be interesting to somehow introduce preferences
into the language, so that we can define generic strategies, that take into account pref-
erences when selecting actions. And finally, of course, it would be interesting to look
at the cases where finding a coherent outcome is tractable.

Acknowledgments We thank the three reviewers of the International Journal of Game Theory for their
very helpful comments and suggestions.

References

Apt KR (1990) Logic programming. In: van Leeuwen J. (ed) Handbook of theoretical computer science,
vol B: formal models and semantics (B). Elsevier/MIT Press, Amsterdam/Cambridge, pp 493–574

Axelrod R (1980) Effective choice in the prisoner’s dilemma. J Confl Resolut 24:3–25
Axelrod R (1984) The evolution of cooperation. Basic Books, New York
Bidoit N, Hull R (1989) Minimalism, justification and non-monotonicity in deductive databases. J Comput

Syst Sci 38(2):290–325
Binmore K (1994) Game theory and the social contract, vol 1: playing fair. The MIT Press, Cambridge
Binmore K (1998) Game theory and the social contract, vol 2: just playing. The MIT Press, Cambridge
Clarke EM, Grumberg O, Peled DA (2000) Model checking. The MIT Press, Cambridge
Emerson EA (1990) Temporal and modal logic. In: van Leeuwen J (ed) Handbook of theoretical computer

science, vol B: formal models and semantics. Elsevier, Amsterdam , pp 996–1072
Ferraris P, Lifschitz V (2005) Mathematical foundations of answer set programming. In: Artemov Ser-

gei N, Barringer H, d’Avila Garcez AS, Lamb LC, Woods J (eds) We will show them! (1). College
Publications, London , pp 615–664

Fitting M (2002) Fixpoint semantics for logic programming. a survey. Theor Comput Sci 278(1–2):25–51
Fortnow L (2009) Program equilibria and discounted computation time. In: Proceedings of the twelfth

conference on theoretical aspects of rationality and knowledge (TARK-09), Palo Alto, CA
Gelfond M (2008) Answer sets. In: Lifschitz V, van Harmelen F, Porter B (eds) Handbook of knowledge

representation, vol 3 of Foundations of artificial intelligence. Elsevier, Amsterdam , pp 285–316
Howard JV (1988) Cooperation in the prisoner’s dilemma. Theory Decis 24(3):203–213
Kalai AT, Kalai E, Lehrer E, Samet D (2010) A commitment folk theorem. Games Econ Behav 69(1):127–

137
Lloyd JW (1987) Foundations of logic programming, 2nd edn. Springer, Heidelberg
Osborne MJ, Rubinstein A (1994) A course in game theory. The MIT Press, Cambridge
Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Reading
Peters M, Szentes B (2008) Definable and contractible contracts. Unpublished Working Paper
Tennenholtz M (2004) Program equilibrium. Games Econ Behav 49:363–373

123

	Program equilibrium---a program reasoning approach
	Abstract
	1 Introduction
	2 Setting the scene
	3 The formal framework
	3.1 Strategies
	3.2 Encounters and outcomes
	3.3 A logic for individual outcomes
	3.4 A logic for collective outcomes
	3.5 A more general set-up

	4 Coherent outcomes
	4.1 Non-determinacy

	5 Logic programming semantics
	5.1 From encounters to logic programs
	5.2 From coherent outcomes of encounters to coherent models of programs
	5.3 Properties of coherent models for programs
	5.4 Answer set semantics and coherent models
	5.5 Coherent outcomes and logic programming semantics: some conclusions

	6 Related work and conclusions
	Acknowledgments
	References

