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A few things: 

• No lectures on 
• Week 7 (i.e., the week starting from Monday 5th November), and 

• Week 11 (i.e., the week starting from Monday 3rd December)

• Labs will continue up to Week 7

• No Class Tests

• A final exam, MCQ, 80% (the other 20% are on the CAs)



Up to now, 

• Recap basic knowledge

• Decision tree learning

• k-NN classification
• What is k-nearest-neighbor classification 

• How can we determine similarity/distance

• Standardizing numeric features (leave this to you) 





Nearest Neighbor

• When to Consider 
• Less than 20 attributes per instance 

• Lots of training data 

• Advantages 
• Training is very fast

• Learn complex target functions 

• Do not lose information 

• Disadvantages 
• Slow at query time

• Easily fooled by irrelevant attributes 



Today’s Topics

• K-NN regression

• Distance-weighted nearest neighbor

• Speeding up k-NN
• edited nearest neighbour 

• k-d trees for nearest neighbour identification



k-nearest-neighbor regression

• learning stage
• given a training set (x(1) , y(1)) ... (x(m) , y(m)), do nothing 
• (it’s sometimes called a lazy learner) 

• classification stage
• given: an instance x(q) to classify

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are most similar to 
x(q)

• return the value

Average over 
neighbours’ values



Distance-weighted nearest neighbor

• We can have instances contribute to a prediction according to their 
distance from x(q)

• classification: 

• regression: 
reciprocal of the 
distance

Intuition: instances 
closer to the current 
one is more important. 



Issues

• Choosing k
• Increasing k reduces variance, increases bias 

• For high-dimensional space, problem that the nearest neighbor may 
not be very close at all! 

• Memory-based technique. Must make a pass through the data for 
each classification. This can be prohibitive for large data sets. 



Nearest neighbour problem 

• Given sample S = ((x1,y1),...,(xm,ym)) and a test point x, 

• it is to find the nearest k neighbours of x. 

• Note: for the algorithms, dimensionality N, i.e., number of features, is 
crucial. 



Efficient Indexing: N=2

• Algorithm 
• compute Voronoi diagram in O(m log m)

• See algorithm in https://en.wikipedia.org/wiki/Fortune's_algorithm

• use point location data structure to determine nearest neighbours  

• complexity: O(m) space, O(log m) time. 



Efficient Indexing: N>2

• Voronoi diagram: size in O(mN/2) 

• Linear algorithm (no pre-processing): 
• compute distance ||x − xi|| for all i ∈ [1, m]. 

• complexity of distance computation: Ω(N m). 

• no additional space needed. 

k-NN is a “lazy” learning 
algorithm – does virtually 
nothing at training time 

but classification/prediction 
time can be costly when the 
training set is large 



Efficient Indexing: N>2

• two general strategies for alleviating this weakness 
• don’t retain every training instance (edited nearest neighbor) 

• pre-processing. Use a smart data structure to look up nearest neighbors (e.g. 
a k-d tree) 



Edited instance-based learning 

• select a subset of the instances that still provide accurate 
classifications 

• incremental deletion

• incremental growth

Q1: Does ordering 
matter? 

Q2: If following the 
optimal ordering, do 
the two approaches 
produce the same 
subset of instances?  



k-d trees 

• a k-d tree is similar to a decision tree except that each internal node 
• stores one instance 

• splits on the median value of the feature having the highest variance 



Construction of k-d tree

median value of the feature having the 
highest variance?  
-- point f, x1 = 6

x1>6
f



Construction of k-d tree

median value of the feature having the 
highest variance?  
-- point f, x1 = 6
-- point c, x2 = 10 and point h, x2 = 5

x1>6
f

x2>10
c

x2>5
h



Construction of k-d tree

There can be other methods of constructing k-d 
trees, see e.g., https://en.wikipedia.org/wiki/K-
d_tree#Nearest_neighbour_search



Finding nearest neighbors with a k-d tree 

• use branch-and-bound search 

• priority queue stores 
• nodes considered

• lower bound on their distance to query instance 

• lower bound given by distance using a single feature 

• average case: O(log2m) 

• worst case: O(m) where m is the size of the training-set 



Finding nearest neighbours in a k-d tree 
Intuitively, for a pair 
(node,value), value represents 
the smallest guaranteed 
distance, i.e., greatest lower 
bound up to now, from the 
instance x(q) to the set of 
instances over which node is 
the selected one to split

For example, the set of 
instances where root is the 
selected one to split over 
is the whole training set. 

(root,0) means that at the 
beginning, the guaranteed smallest 
distance to the training set is 0



k-d tree example (Manhattan distance) 
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k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



Extended Materials: Voronoi Diagram 
Generation
• https://en.wikipedia.org/wiki/Voronoi_diagram

• https://courses.cs.washington.edu/courses/cse326/00wi/projects/vor
onoi.html

https://en.wikipedia.org/wiki/Voronoi_diagram
https://courses.cs.washington.edu/courses/cse326/00wi/projects/voronoi.html

