
K-Nearest Neighbour
(Continued)

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

A few things:

• No lectures on
• Week 7 (i.e., the week starting from Monday 5th November), and

• Week 11 (i.e., the week starting from Monday 3rd December)

• Labs will continue up to Week 7

• No Class Tests

• A final exam, MCQ, 80% (the other 20% are on the CAs)

Up to now,

• Recap basic knowledge

• Decision tree learning

• k-NN classification
• What is k-nearest-neighbor classification

• How can we determine similarity/distance

• Standardizing numeric features (leave this to you)

Nearest Neighbor

• When to Consider
• Less than 20 attributes per instance

• Lots of training data

• Advantages
• Training is very fast

• Learn complex target functions

• Do not lose information

• Disadvantages
• Slow at query time

• Easily fooled by irrelevant attributes

Today’s Topics

• K-NN regression

• Distance-weighted nearest neighbor

• Speeding up k-NN
• edited nearest neighbour

• k-d trees for nearest neighbour identification

k-nearest-neighbor regression

• learning stage
• given a training set (x(1) , y(1)) ... (x(m) , y(m)), do nothing
• (it’s sometimes called a lazy learner)

• classification stage
• given: an instance x(q) to classify

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are most similar to
x(q)

• return the value

Average over
neighbours’ values

Distance-weighted nearest neighbor

• We can have instances contribute to a prediction according to their
distance from x(q)

• classification:

• regression:
reciprocal of the
distance

Intuition: instances
closer to the current
one is more important.

Issues

• Choosing k
• Increasing k reduces variance, increases bias

• For high-dimensional space, problem that the nearest neighbor may
not be very close at all!

• Memory-based technique. Must make a pass through the data for
each classification. This can be prohibitive for large data sets.

Nearest neighbour problem

• Given sample S = ((x1,y1),...,(xm,ym)) and a test point x,

• it is to find the nearest k neighbours of x.

• Note: for the algorithms, dimensionality N, i.e., number of features, is
crucial.

Efficient Indexing: N=2

• Algorithm
• compute Voronoi diagram in O(m log m)

• See algorithm in https://en.wikipedia.org/wiki/Fortune's_algorithm

• use point location data structure to determine nearest neighbours

• complexity: O(m) space, O(log m) time.

Efficient Indexing: N>2

• Voronoi diagram: size in O(mN/2)

• Linear algorithm (no pre-processing):
• compute distance ||x − xi|| for all i ∈ [1, m].

• complexity of distance computation: Ω(N m).

• no additional space needed.

k-NN is a “lazy” learning
algorithm – does virtually
nothing at training time

but classification/prediction
time can be costly when the
training set is large

Efficient Indexing: N>2

• two general strategies for alleviating this weakness
• don’t retain every training instance (edited nearest neighbor)

• pre-processing. Use a smart data structure to look up nearest neighbors (e.g.
a k-d tree)

Edited instance-based learning

• select a subset of the instances that still provide accurate
classifications

• incremental deletion

• incremental growth

Q1: Does ordering
matter?

Q2: If following the
optimal ordering, do
the two approaches
produce the same
subset of instances?

k-d trees

• a k-d tree is similar to a decision tree except that each internal node
• stores one instance

• splits on the median value of the feature having the highest variance

Construction of k-d tree

median value of the feature having the
highest variance?
-- point f, x1 = 6

x1>6
f

Construction of k-d tree

median value of the feature having the
highest variance?
-- point f, x1 = 6
-- point c, x2 = 10 and point h, x2 = 5

x1>6
f

x2>10
c

x2>5
h

Construction of k-d tree

There can be other methods of constructing k-d
trees, see e.g., https://en.wikipedia.org/wiki/K-
d_tree#Nearest_neighbour_search

Finding nearest neighbors with a k-d tree

• use branch-and-bound search

• priority queue stores
• nodes considered

• lower bound on their distance to query instance

• lower bound given by distance using a single feature

• average case: O(log2m)

• worst case: O(m) where m is the size of the training-set

Finding nearest neighbours in a k-d tree
Intuitively, for a pair
(node,value), value represents
the smallest guaranteed
distance, i.e., greatest lower
bound up to now, from the
instance x(q) to the set of
instances over which node is
the selected one to split

For example, the set of
instances where root is the
selected one to split over
is the whole training set.

(root,0) means that at the
beginning, the guaranteed smallest
distance to the training set is 0

k-d tree example (Manhattan distance)

k-d tree example (Manhattan distance)

k-d tree example (Manhattan distance)

k-d tree example (Manhattan distance)

k-d tree example (Manhattan distance)

k-d tree example (Manhattan distance)

k-d tree example (Manhattan distance)

k-d tree example (Manhattan distance)

k-d tree example (Manhattan distance)

k-d tree example (Manhattan distance)

Extended Materials: Voronoi Diagram
Generation
• https://en.wikipedia.org/wiki/Voronoi_diagram

• https://courses.cs.washington.edu/courses/cse326/00wi/projects/vor
onoi.html

https://en.wikipedia.org/wiki/Voronoi_diagram
https://courses.cs.washington.edu/courses/cse326/00wi/projects/voronoi.html

