K-Nearest Neighbour (Continued)

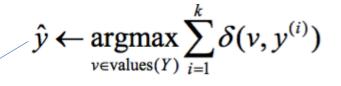
Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/

A few things:

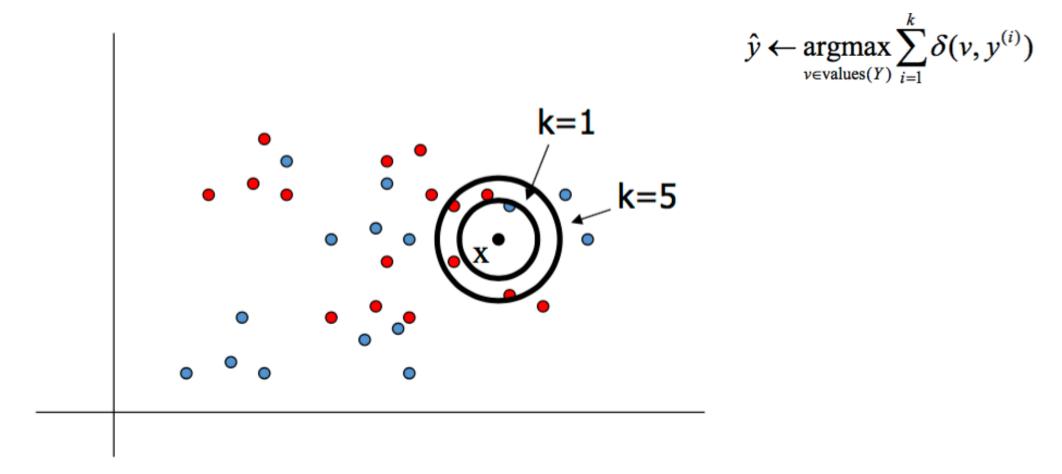
- No lectures on
 - Week 7 (i.e., the week starting from Monday 5th November), and
 - Week 11 (i.e., the week starting from Monday 3rd December)
- Labs will continue up to Week 7
- No Class Tests
- A final exam, MCQ, 80% (the other 20% are on the CAs)

Up to now,

- Recap basic knowledge
- Decision tree learning
- k-NN classification
 - What is k-nearest-neighbor classification
 - How can we determine similarity/distance
 - Standardizing numeric features (leave this to you)



To classify a new input vector x, examine the k-closest training data points to x and assign the object to the most frequently occurring class



Nearest Neighbor

• When to Consider

- Less than 20 attributes per instance
- Lots of training data

Advantages

- Training is very fast
- Learn complex target functions
- Do not lose information

Disadvantages

- Slow at query time
- Easily fooled by irrelevant attributes

Today's Topics

- K-NN regression
- Distance-weighted nearest neighbor
- Speeding up k-NN
 - edited nearest neighbour
 - k-d trees for nearest neighbour identification

k-nearest-neighbor *regression*

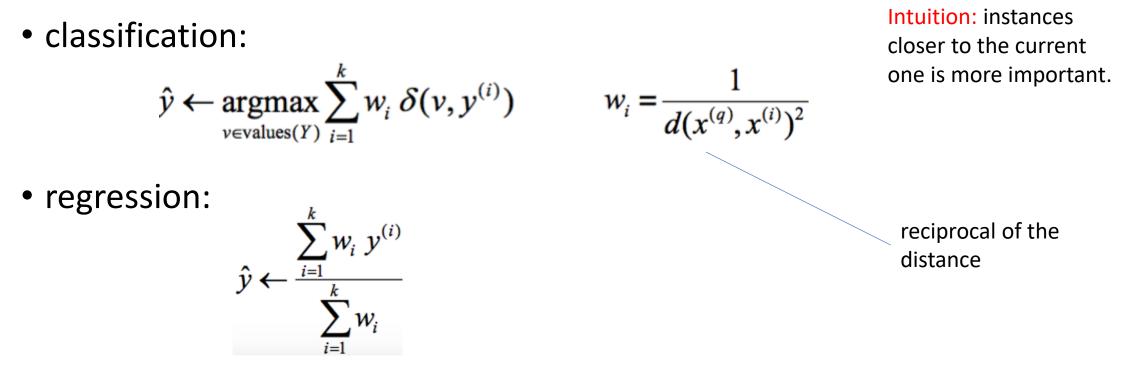
- learning stage
 - given a training set $(\mathbf{x}^{(1)}, y^{(1)}) \dots (\mathbf{x}^{(m)}, y^{(m)})$, do nothing
 - (it's sometimes called a *lazy learner*)
- classification stage
 - **given**: an instance x^(q) to classify
 - find the k training-set instances (x⁽¹⁾, y⁽¹⁾)... (x^(k), y^(k)) that are most similar to x^(q)
 - return the value

$$\hat{y} \leftarrow \frac{1}{k} \sum_{i=1}^{k} y^{(i)}$$

Average over neighbours' values

Distance-weighted nearest neighbor

- We can have instances contribute to a prediction according to their distance from $x^{(q)}$



Issues

- Choosing k
 - Increasing k reduces variance, increases bias
- For high-dimensional space, problem that the nearest neighbor may not be very close at all!
- Memory-based technique. Must make a pass through the data for each classification. This can be prohibitive for large data sets.

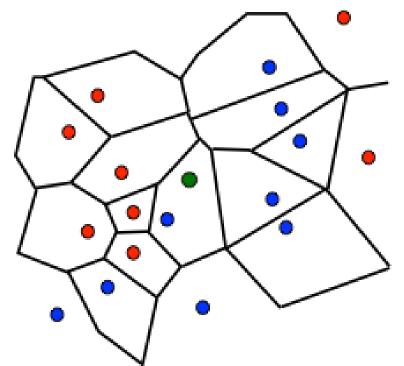
Nearest neighbour problem

- Given sample $S = ((x_1, y_1), \dots, (x_m, y_m))$ and a test point x,
- it is to find the nearest k neighbours of x.

• Note: for the algorithms, dimensionality N, i.e., number of features, is crucial.

Efficient Indexing: N=2

- Algorithm
 - compute Voronoi diagram in O(m log m)
 - See algorithm in https://en.wikipedia.org/wiki/Fortune's_algorithm
 - use point location data structure to determine nearest neighbours
 - complexity: O(m) space, O(log m) time.



Efficient Indexing: N>2

- Voronoi diagram: size in O(m^{N/2})
- Linear algorithm (no pre-processing):
 - compute distance $||x x_i||$ for all $i \in [1, m]$.
 - complexity of distance computation: $\Omega(N m)$.
 - no additional space needed.

k-NN is a "lazy" learning algorithm – does virtually nothing at training time

but classification/prediction time can be costly when the training set is large

Efficient Indexing: N>2

- two general strategies for alleviating this weakness
 - don't retain every training instance (edited nearest neighbor)
 - pre-processing. Use a smart data structure to look up nearest neighbors (e.g. a k-d tree)

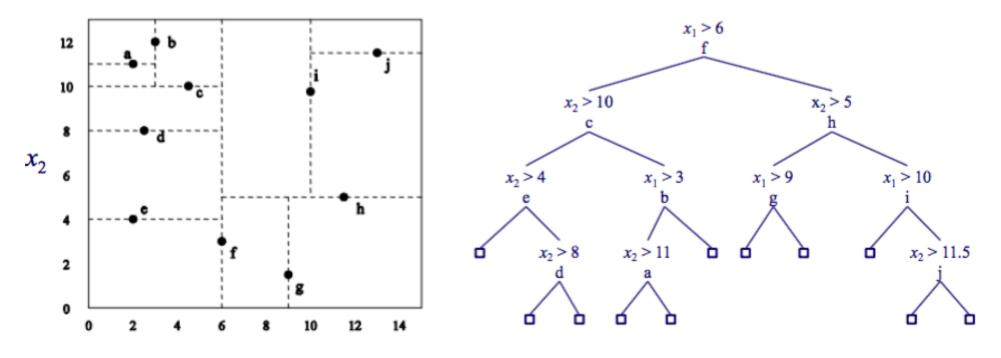
Edited instance-based learning

for each training instance $(x^{(i)}, y^{(i)})$

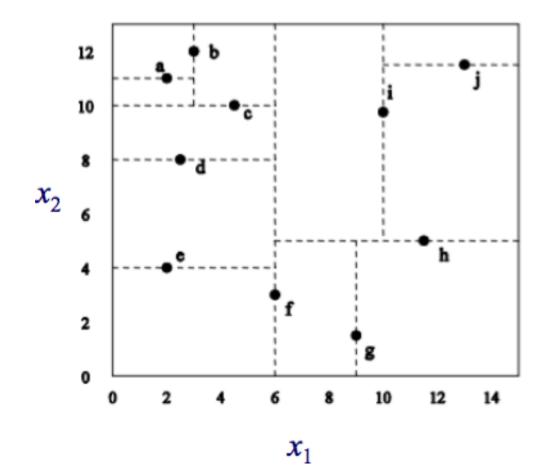
- select a subset of the instances that still provide accurate classifications
- incremental deletion Q1: Does ordering matter? start with all training instances in memory for each training instance $(x^{(i)}, y^{(i)})$ if other training instances provide correct classification for $(x^{(i)}, y^{(i)})$ delete it from the memory • incremental growth start with an empty memory
 - Q2: If following the optimal ordering, do the two approaches produce the same subset of instances?
 - if other training instances in memory **don't** correctly classify $(x^{(i)}, y^{(i)})$ add it to the memory

k-d trees

- a k-d tree is similar to a decision tree except that each internal node
 - stores one instance
 - splits on the median value of the feature having the highest variance



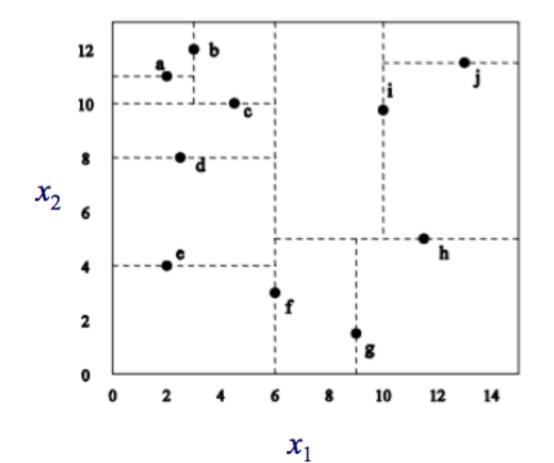
Construction of k-d tree



median value of the feature having the
highest variance?
-- point f, x₁ = 6

x₁>6 f

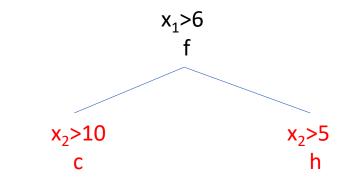
Construction of k-d tree



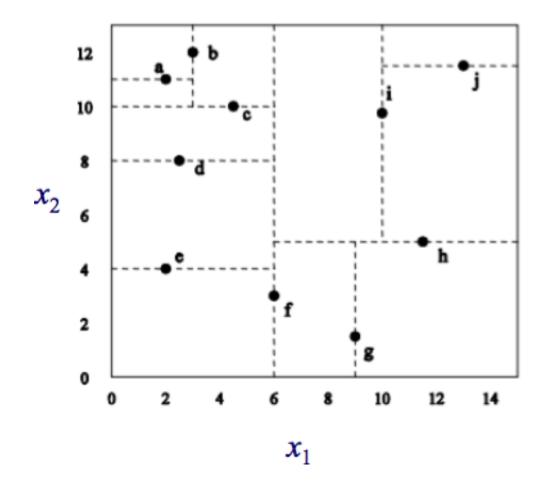
median value of the feature having the highest variance?

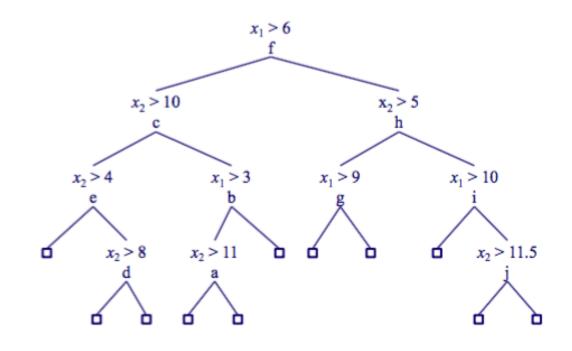
-- point f,
$$x_1 = 6$$

-- point c,
$$x_2 = 10$$
 and point h, $x_2 = 5$



Construction of k-d tree





There can be other methods of constructing k-d trees, see e.g., https://en.wikipedia.org/wiki/K-d_tree#Nearest_neighbour_search

Finding nearest neighbors with a k-d tree

- use branch-and-bound search
- priority queue stores
 - nodes considered
 - lower bound on their distance to query instance
- lower bound given by distance using a single feature
- average case: O(log₂m)
- worst case: O(m) where m is the size of the training-set

Finding nearest neighbours in a k-d tree

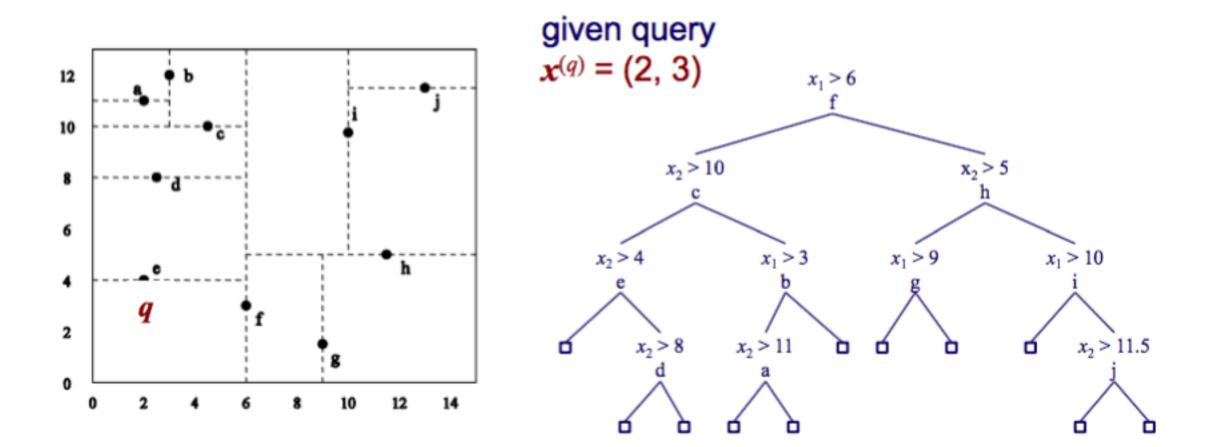
```
NearestNeighbor(instance x^{(q)})
   PQ = \{\}
                                                                // minimizing priority queue
   best_dist = ∞
                                                                // smallest distance seen so far
   PQ.push(root, 0)
   while PQ is not empty
          (node, bound) = PQ.pop();
          if (bound \geq best_dist)
                     return best_node.instance
                                                                // nearest neighbor found
          dist = distance(x^{(q)}, node. instance)
          if (dist < best dist)
                     best dist = dist
                     best node = node
          if (q[node.feature] - node.threshold > 0)
                     PQ.push(node.left, x<sup>(q)</sup>[node.feature] - node.threshold)
                     PQ.push(node.right, 0)
          else
                     PQ.push(node.left, 0)
                     PQ.push(node.right, node. threshold - x^{(q)} [node.feature])
```

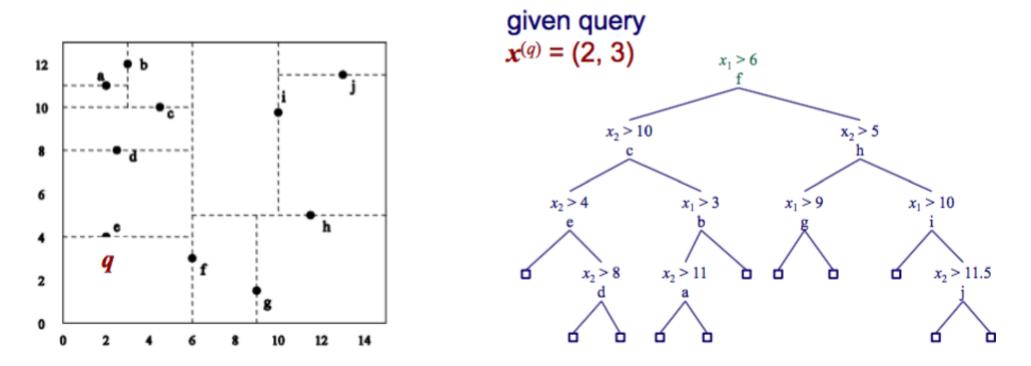
return best_node. instance

Intuitively, for a pair (*node*,*value*), *value* represents the smallest guaranteed distance, i.e., greatest lower bound up to now, from the instance $x^{(q)}$ to the set of instances over which *node* is the selected one to split

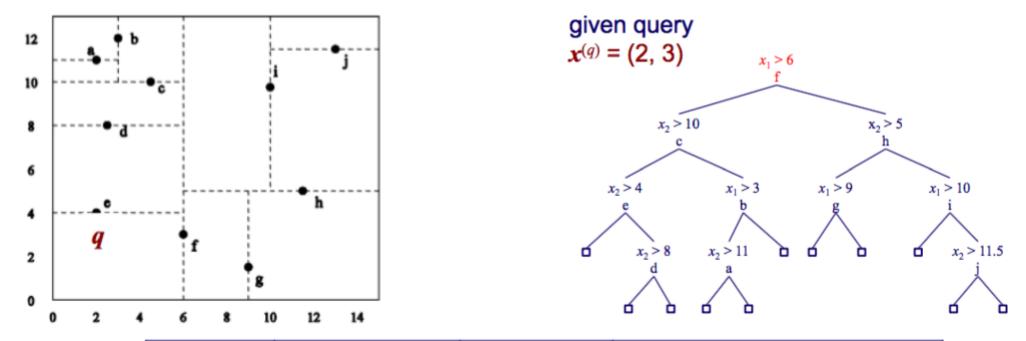
For example, the set of instances where *root* is the selected one to split over is the whole training set.

(root,0) means that at the beginning, the guaranteed smallest distance to the training set is 0

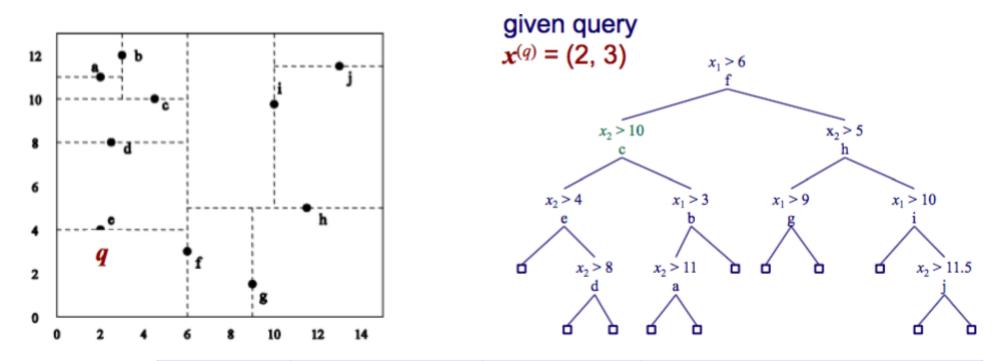




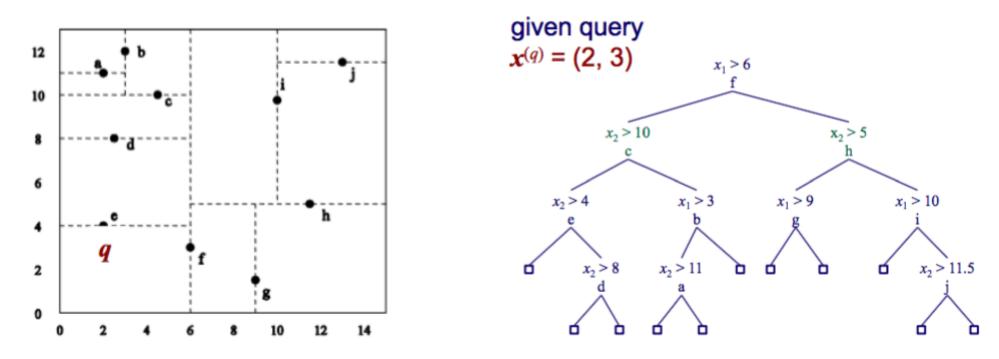
distance	best distance	best node	priority queue
	∞		(f, 0)



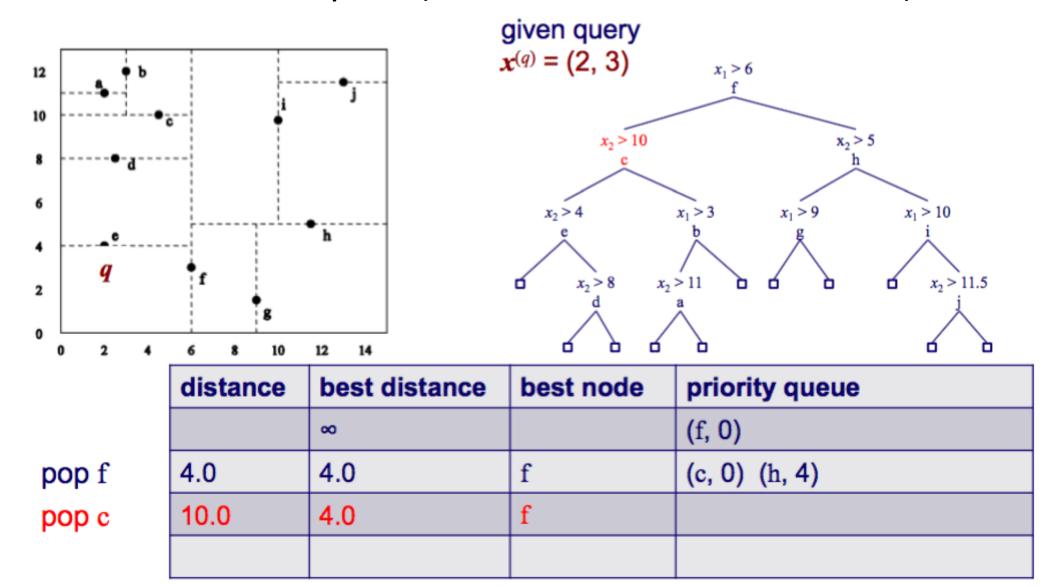
pop f	distance	best distance	best node	priority queue
		∞		(f, 0)
	4.0	4.0	f	

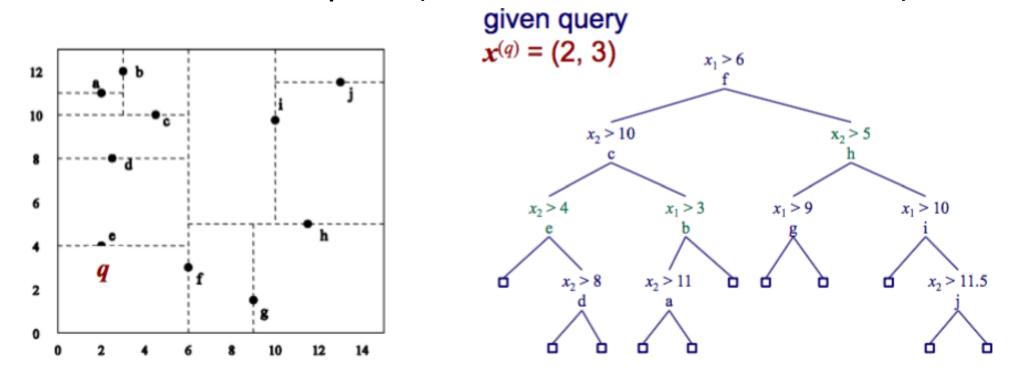


pop f	distance	best distance	best node	priority queue
		∞		(f, 0)
	4.0	4.0	f	(c, 0)

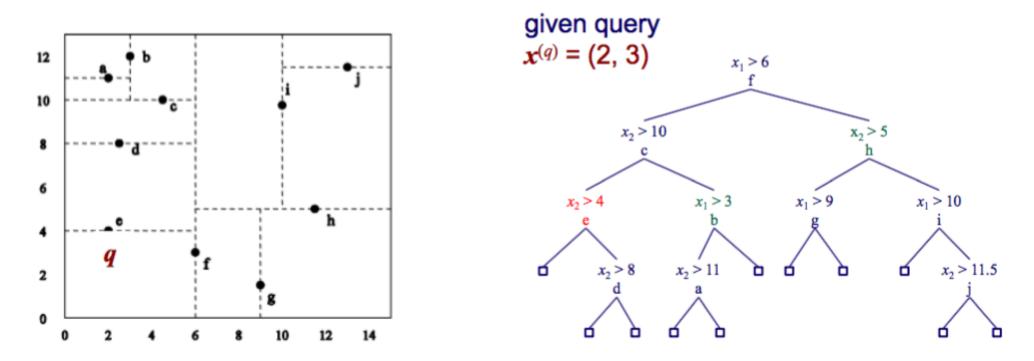


pop f	distance	best distance	best node	priority queue
		×		(f, 0)
	4.0	4.0	f	(c, 0) (h, 4)

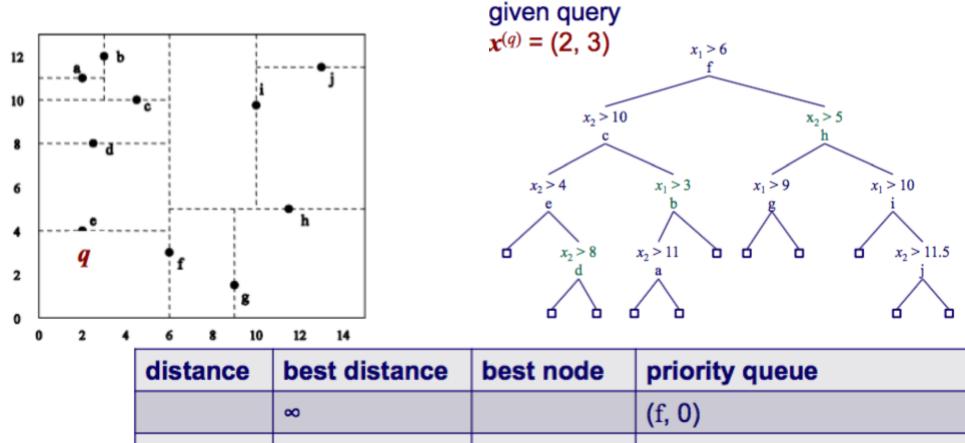




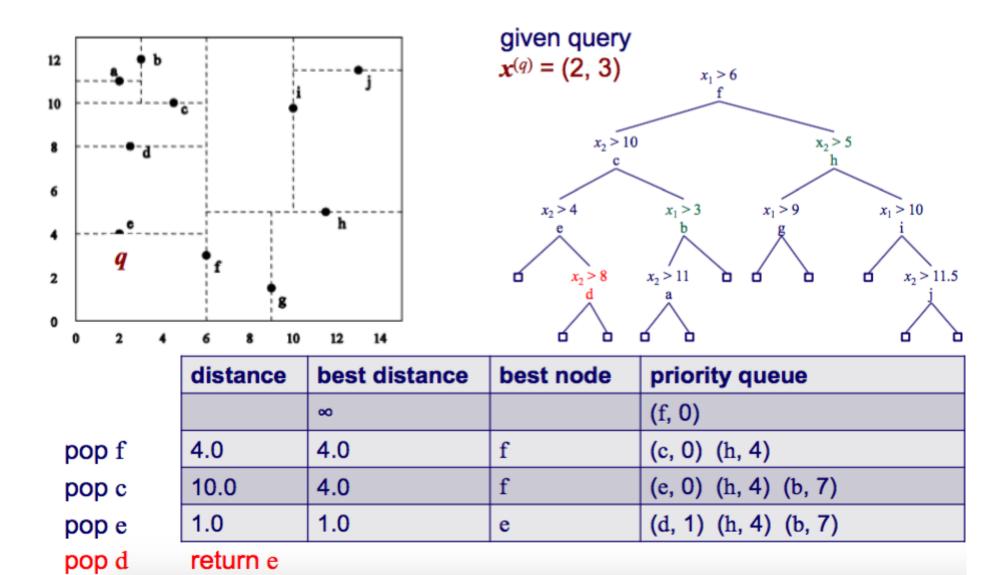
	distance	best distance	best node	priority queue
		×		(f, 0)
pop f	4.0	4.0	f	(c, 0) (h, 4)
pop c	10.0	4.0	f	(e, 0) (h, 4) (b, 7)



	distance	best distance	best node	priority queue
		∞		(f, 0)
pop f	4.0	4.0	f	(c, 0) (h, 4)
pop c	10.0	4.0	f	(e, 0) (h, 4) (b, 7)
pop e	1.0	1.0	e	



				X = I
pop f	4.0	4.0	f	(c, 0) (h, 4)
pop c	10.0	4.0	f	(e, 0) (h, 4) (b, 7)
pop e	1.0	1.0	e	(d, 1) (h, 4) (b, 7)



Extended Materials: Voronoi Diagram Generation

- <u>https://en.wikipedia.org/wiki/Voronoi_diagram</u>
- <u>https://courses.cs.washington.edu/courses/cse326/00wi/projects/vor</u> <u>onoi.html</u>