K-Nearest Neighbour (Continued) and Model Evaluation

Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

- Two machine learning algorithms
 - Decision tree learning
 - K-nearest neighbour
 - What is k-nearest-neighbor classification
 - How can we determine similarity/distance
 - Standardizing numeric features (leave this to you)
 - K-NN regression
 - Distance-weighted nearest neighbor
 - Speeding up k-NN
 - edited nearest neighbour
 - k-d trees for nearest neighbour identification

Topics

- Locally weighted regression to handle irrelevant features
- Inductive bias
- Test sets revisited
- learning curves
- multiple training/test partitions
 - stratified sampling
 - cross validation
- confusion matrices
 - TP, FP, TN, FN
- ROC curves

Locally weighted regression for Irrelevant features

Irrelevant features in instance-based learning

here's a case in which there is one relevant feature x_1 and a 1-NN rule classifies each instance correctly

Can you find a point (a,b) which is red, if classified only according to feature x1, but is green, if classified according to both features? consider the effect of an irrelevant feature x₂ on distances and nearest neighbors

Locally weighted regression

- one way around this limitation is to weight features differently
- *locally weighted regression* is one nearest-neighbor variant that does this
- prediction task
 - **given**: an instance x^(q) to make a prediction for
 - find the k training-set instances $(\mathbf{x}^{(1)}, y^{(1)}) \dots (\mathbf{x}^{(k)}, y^{(k)})$ that are most similar to $\mathbf{x}^{(q)}$
 - return the value $f(x^{(q)})$

What's function f ?

Locally weighted regression

- Determining function f
 - Assume that f is a linear function over the features, i.e.,

 $f(x^{(i)}) = w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \dots + w_n x_n^{(i)}$

• find the weights w_i for each $x^{(q)}$ by minimizing

$$\arg\min_{w_0,w_1,\ldots,x_n}\sum_{i=1}^k (f(x^{(i)})-y^{(i)})^2 - be cover$$

can do this using gradient descent (to be covered soon)

• After obtaining weights, for $x^{(q)}$, we have $f(\mathbf{x}^{(q)}) = w_0 + w_1 x_1^{(q)} + w_2 x_2^{(q)} + ... + w_n x_n^{(q)}$

Discussions

Strengths of instance-based learning

- simple to implement
- "training" is very efficient
- adapts well to on-line learning
- robust to noisy training data (when k > 1)
- often works well in practice

Limitations of instance-based learning

- sensitive to range of feature values
- sensitive to irrelevant and correlated features, although ...
 - there are variants (such as locally weighted regression) that learn weights for different features
- classification/prediction can be inefficient, although ...
 - edited methods and k-d trees can help alleviate this weakness
- doesn't provide much insight into problem domain because there is no explicit model

Inductive bias

Inductive bias

- inductive bias is the set of assumptions a learner uses to be able to predict yi for a previously unseen instance xi
- two components
 - *hypothesis space bias*: determines the models that can be represented
 - *preference bias*: specifies a preference ordering within the space of models
- in order to *generalize* (i.e. make predictions for previously unseen instances) a learning algorithm must have an inductive bias

Consider the inductive bias of DT and k-NN learners

learner	hypothesis space bias	preference bias
ID3 decision tree	trees with single-feature, axis- parallel splits	small trees identified by greedy search
<i>k</i> -NN	Voronoi decomposition determined by nearest neighbors	instances in neighborhood belong to same class

Test sets revisited

Test sets revisited

• How can we get an unbiased estimate of the accuracy of a learned model?

Test sets revisited

- How can we get an unbiased estimate of the accuracy of a learned model?
 - when learning a model, you should pretend that you don't have the test data yet (it is "in the mail")*
 - if the test-set labels influence the learned model in any way, accuracy estimates will be biased

* In some applications it is reasonable to assume that you have access to the feature vector (i.e. x) but not the y part of each test instance.

Learning Curve

Learning curves

- How does the accuracy of a learning method change as a function of the training-set size?
 - this can be assessed by plotting *learning curves*

Learning curves

- given training/test set partition
 - for each sample size s on learning curve
 - (optionally) repeat n times
 - randomly select s instances from training set
 - learn model
 - evaluate model on test set to determine accuracy a
 - plot (s, a) or (s, avg. accuracy and error bars)

multiple training/test partitions

Limitations of using a single training/test partition

- we may not have enough data to make sufficiently large training and test sets
 - a larger test set gives us more reliable estimate of accuracy (i.e. a lower variance estimate)
 - but... a larger training set will be more representative of how much data we actually have for learning process
- a single training set doesn't tell us how sensitive accuracy is to a particular training sample

Using multiple training/test partitions

- two general approaches for doing this
 - random resampling
 - cross validation

Random resampling

• We can address the second issue by repeatedly randomly partitioning the available data into training and test sets.

Stratified sampling

• When randomly selecting training or validation sets, we may want to ensure that class proportions are maintained in each selected set

Recall: a validation set (a.k.a. tuning set) is a subset of the training set that is held aside

Validation datasets can be used for <u>regularization</u> by <u>early stopping</u>: stop training when the error on the validation dataset increases, as this is a sign of <u>overfitting</u> to the training dataset

Cross validation

partition data into *n* subsamples

iteratively leave one subsample out for the test set, train on the rest

iteration	train on	test on			
1	s ₂ s ₃ s ₄ s ₅	s ₁			
2	s ₁ s ₃ s ₄ s ₅	s ₂			
3	s ₁ s ₂ s ₄ s ₅	S ₃			
4	$\mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{S}_3 \ \mathbf{S}_5$	S ₄			
5	s ₁ s ₂ s ₃ s ₄	s ₅			

Cross validation example

 Suppose we have 100 instances, and we want to estimate accuracy with cross validation

iteration	train on	test on correct				
1	s ₂ s ₃ s ₄ s ₅	s ₁	11 / 20			
2	s₁ s₃ s₄ s₅	s ₂	17 / 20			
3	s₁ s₂ s₄ s₅	s ₃	16 / 20			
4	s ₁ s ₂ s ₃ s ₅	S ₄	13 / 20			
5	s ₁ s ₂ s ₃ s ₄	s ₅	16 / 20			

accuracy = 73/100 = 73%

Cross validation

- 10-fold cross validation is common, but smaller values of n are often used when learning takes a lot of time
- in *leave-one-out* cross validation, *n* = # instances
- in stratified cross validation, stratified sampling is used when partitioning the data
- Cross validation makes efficient use of the available data for testing

Confusion matrices

Confusion matrices

 How can we understand what types of mistakes a learned model makes?

		bend	jack	jump	pjump	run	side	skip	walk	wave1	wave:	2
		-			1		1	- î -				
	wave2	0	0	0	0	0	0	0	0	0	100	
	wave1-	0	0	0	0	0	0	0	0	67	33	1
	walk	0	0	0	0	0	0	0	100	0	0	7
0.000	skip	0	0	0	0	0	0	100	0	0	0	-
class	side	0	0	0	0	0	100	0	0	0	0	-
actual	run -	0	0	0	0	89	0	11	0	0	0	-
	pjump	0	0	0	100	0	0	0	0	0	0	4
	jump	0	0	89	0	0	0	11	0	0	0	-
	jack	0	100	0	0	0	0	0	0	0	0	-
	bend	100	ò	o o	ò	ò	ò	ò	ò	o	ò	-

predicted class

Confusion matrix for 2-class problems

Is accuracy an adequate measure of predictive performance?

- accuracy may not be a useful measure in cases where
 - there is a large class skew
 - Is 98% accuracy good when 97% of the instances are negative?
 - there are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
- we are most interested in a subset of high-confidence predictions

Other accuracy metrics

Other accuracy metrics

Other accuracy metrics

false positive rate = $\frac{FP}{actual neg} = \frac{FP}{TN + FP}$

ROC curves

ROC curves

• A *Receiver Operating Characteristic* (*ROC*) curve plots the TP-rate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied

Algorithm for creating an ROC curve

let $\begin{pmatrix} y^{(1)}, c^{(1)} \end{pmatrix}$... $\begin{pmatrix} y^{(m)}, c^{(m)} \end{pmatrix}$ be the test-set instances sorted according to predicted confidence $c^{(i)}$ that each instance is positive

let *num_neg*, *num_pos* be the number of negative/positive instances in the test set

TP = 0, FP = 0

 $last_TP = 0$

for i = 1 to m

// find thresholds where there is a pos instance on high side, neg instance on low side if (i > 1) and ($c^{(i)} \neq c^{(i-1)}$) and ($y^{(i)} ==$ neg) and ($TP > last_TP$) $FPR = FP / num_neg$, $TPR = TP / num_pos$ output (FPR, TPR) coordinate $last_TP = TP$ if $y^{(i)} ==$ pos ++TPelse ++FP

FPR = *FP* / *num_neg*, *TPR* = *TP* / *num_pos* output (*FPR*, *TPR*) coordinate

Plotting an ROC curve

ROC curve example

task: recognizing genomic units called operons

figure from Bockhorst et al., Bioinformatics 2003

ROC curves and misclassification costs

The best operating point depends on the relative costs of FN and FP misclassifications

