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Up to now,

* Two machine learning algorithms
* Decision tree learning

* K-nearest neighbour
* What is k-nearest-neighbor classification
* How can we determine similarity/distance
e Standardizing numeric features (leave this to you)
* K-NN regression
* Distance-weighted nearest neighbor
* Speeding up k-NN
» edited nearest neighbour
* k-d trees for nearest neighbour identification



Topics

* Locally weighted regression to handle irrelevant features
* Inductive bias

e Test sets revisited
* learning curves

* multiple training/test partitions
e stratified sampling
* cross validation

e confusion matrices
* TP, FP, TN, FN

* ROC curves



Locally weighted regression
for Irrelevant features



Irrelevant features in instance-based learning

here’s a case in which there
is one relevant feature x, and a 1-NN
rule classifies each instance correctly

—0—00090 —0—0 0

Can you find a point (a,b) which is red,
if classified only according to feature
x1, but is green, if classified according
to both features?

consider the effect of an
irrelevant feature x, on distances
and nearest neighbors




Locally weighted regression

e one way around this limitation is to weight features differently

* locally weighted regression is one nearest-neighbor variant that does
this

 prediction task
* given: an instance x(% to make a prediction for

* find the k training-set instances (x(1), y{1)) ... (x%), ytk) that are most similar to
X(Q)

What’s function f ?



Locally weighted regression

* Determining function f
* Assume that fis a linear function over the features, i.e.,

f(il?(i)) = wo + wla;li) + wgmg) + ...+ wng;g)

* find the weights w; for each x(@ by minimizing
can do this using

k gradient descent (to

arg  min Z(f(g;(z)) _ y(i))Q ——— becoveredsoon)

WO, W1 yeeeyTn £
1=1

* After obtaining weights, for x@, we have f(x?)=w, +wx? +w,x? +... +w x¢



Discussions



Strengths of instance-based learning

* simple to implement

* “training” is very efficient

* adapts well to on-line learning

 robust to noisy training data (when k > 1)
» often works well in practice



Limitations of instance-based learning

* sensitive to range of feature values

* sensitive to irrelevant and correlated features, although ...

* there are variants (such as locally weighted regression) that learn weights for
different features

e classification/prediction can be inefficient, although ...
* edited methods and k-d trees can help alleviate this weakness

* doesn’t provide much insight into problem domain because there is
no explicit model



Inductive bias



Inductive bias

* inductive bias is the set of assumptions a learner uses to be able to
predict yifor a previously unseen instance X

* two components
* hypothesis space bias: determines the models that can be represented
* preference bias: specifies a preference ordering within the space of models

* in order to generalize (i.e. make predictions for previously unseen
instances) a learning algorithm must have an inductive bias



Consider the inductive bias of DT and k-NN
learners

hypothesis space bias preference bias

ID3 decision tree trees with single-feature, axis- small trees identified by
parallel splits greedy search
k-NN Voronoi decomposition determined instances in neighborhood

by nearest neighbors belong to same class




Test sets revisited



Test sets revisited

* How can we get an unbiased estimate of the accuracy of a learned
model?

labeled data set

4

training set test set

| !

learned model
learning
method — S

accuracy estimate




Test sets revisited

* How can we get an unbiased estimate of the accuracy of a learned
model?

* when learning a model, you should pretend that you don’t have the test data
yet (it is “in the mail”)*

* if the test-set labels influence the learned model in any way, accuracy
estimates will be biased

* In some applications it is reasonable to assume that you have access to the
feature vector (i.e. x) but not the y part of each test instance.



Learning Curve



Learning curves

* How does the accuracy of a learning method change as a function of
the training-set size? T e
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Learning curves

* given training/test set partition

* for each sample size s on learning curve
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multiple training/test partitions



Limitations of using a single training/test
partition

* we may not have enough data to make sufficiently large training and

test sets
* alarger test set gives us more reliable estimate of accuracy (i.e. a lower
variance estimate)
e but... a larger training set will be more representative of how much data we
actually have for learning process

* asingle training set doesn’t tell us how sensitive accuracy is to a
particular training sample



Using multiple training/test partitions

* two general approaches for doing this
* random resampling
* cross validation



Random resampling

* We can address the second issue by repeatedly randomly partitioning
the available data into training and test sets.

labeled data set
ettt e - -

l random
training sets test sets partitions
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Stratified sampling

* When randomly selecting training or validation sets, we may want to
ensure that class proportions are maintained in each selected set

labeled data set

+++++tttb bt oo o
training set test set
+4+4++++ - - - - ++++tt - - - -

v

validation set
+4++ - -

This can be done via stratified
sampling: first stratify instances by

Recall: a validation set
(a.k.a. tuning set) is a
subset of the training set
that is held aside

Validation datasets can be used

for regularization by early stopping:
stop training when the error on the
validation dataset increases, as this
is a sign of overfitting to the
training dataset

class, then randomly select instances

from each class proportionally.


https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Early_stopping
https://en.wikipedia.org/wiki/Overfitting

Cross validation

partition data
into n subsamples

iteratively leave one
subsample out for
the test set, train on
the rest

labeled data set

) 4

S, S, S, Sy Ss
iteration train on test on
1 S, S3 S; Ss S;
2 S; S3 S4 S5 S,
3 S1 S 84 Ss S3
4 S; S, S3 Ss Sy
5 S1 S2 S3 Sy Ss




Cross validation example

* Suppose we have 100 instances, and we want to estimate accuracy
with cross validation

iteration train on test on correct
1 S, S3 S; Ss S, 11720
2 Sy S3 S; Ss S, 17120
3 S; S, S; Ss S; 16/ 20
4 S; S; S3 Ss S4 13720
S S; S, S3 S, Ss 16/ 20

accuracy = 73/100 = 73%



Cross validation

e 10-fold cross validation is common, but smaller values of n are often
used when learning takes a lot of time

* in leave-one-out cross validation, n = # instances

* in stratified cross validation, stratified sampling is used when
partitioning the data

* Cross validation makes efficient use of the available data for testing



Confusion matrices



Confusion matrices

* How can we understand what types of mistakes a learned model
makes?

T
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Confusion matrix for 2-class problems

actual class

A
r -~

positive negative

r

positive | true positives | false positives
(TP) (FP)

predicted < |

class

negative false negatives| true negatives
(FN) (TN)

\.

TP+ TN
TP+FP+FN+TN

FP + FN
TP +FP +FN+TN

dacfuracy =

error =1- accuracy =




|S accuracy an adequate measure of
oredictive performance?

e accuracy may not be a useful measure in cases where

e there is a large class skew
* |s 98% accuracy good when 97% of the instances are negative?

* there are differential misclassification costs — say, getting a positive wrong
costs more than getting a negative wrong

e Consider a medical domain in which a false positive results in an extraneous test but a
false negative results in a failure to treat a disease

* we are most interested in a subset of high-confidence predictions



Other accuracy metrics

actual class
~ — -
positive negative
f
positive | true positives | false positives
(TP) (FP)
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Other accuracy metrics

actual class
e
- N
positive negative
,
positive | true positives false positives
(TP) (FP)
predicted < —_
class .| false negatives| true negatives
negative
| (FN) (TN)
\
it TP TP
true positive rate (recall) = =

actual pos TP +FN



Other accuracy metrics

actual class
ra — —
positive negative
f
positive | true positives false positives
(TP) (FP)
predicted <
(Sans . | false negatives| true negatives
negative
| (FN) (TN)
\
true positive rate (recall) = 1P - 1P
actual pos TP +FN
FP FP
false positive rate = —

actual neg TN +FP



ROC curves



ROC curves

* A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs.
the FP-rate as a threshold on the confidence of an instance being
positive is varied

ideal point Different methods can
work better in different
. Alg 1 parts of ROC space.
@ 1.07
o
®
% Alg2 .~
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|
-
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Algorithm for creating an ROC curve

let (()’m, Cm)--- (}’w, C(m;)Lbe the test-set instances sorted according to predicted confidence
¢! that each instance is positive

let num_neg, num_pos be the number of negative/positive instances in the test set
TP=0, FP =0
last TP =0
fori=1tom
/I find thresholds where there is a pos instance on high side, neg instance on low side
if (i>1)and (cV#c*”)and(y” ==neg)and ( TP > last TP)
FPR = FP /num_neg, TPR = TP /num_pos
output (FPR, TPR) coordinate
last TP = TP
if y == pos
++TP
else
++FP
FPR = FP/num_neg, TPR = TP /num_pos
output (FPR, TPR) coordinate



Plotting an ROC curve
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ROC curve example

task: recognizing genomic units called operons
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figure from Bockhorst et al., Bioinformatics 2003



ROC curves and misclassification costs

The best operating point depends on the relative costs of FN and
FP misclassifications

Thyroid anomaly detection

> best operating point when
FN costs 10x FP
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cost of misclassifying positives
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