
Recurrent Neural Networks
Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

• Overview of Machine Learning
• Traditional Machine Learning Algorithms
• Deep learning
• Introduction to Tensorflow
• Introduction to Deep Learning
• Functional view and features
• Backward and forward computation
• Convolutional neural networks (various layers, regularization, etc)

Topics

• Sequential data
• Computational graph
• Recurrent neural networks (RNN)
• Example: LSTM
• CNN + RNN
• Training RNN
• Some other variants of RNNs

Sequential Data

Recurrent neural networks

• Dates back to (Rumelhart et al., 1986)
• A family of neural networks for handling sequential data, which

involves variable length inputs or outputs

• Especially, for natural language processing (NLP) and video
recognition

Sequential data

• Each data point: A sequence of vectors !("), for 1 ≤ " ≤ #
• Batch data: many sequences with different lengths #
• Label: can be a scalar, a vector, or even a sequence

• Example
• Sentiment analysis
• Machine translation
• Video content analysis

Example: machine translation

Example: Video Stream

Computational graphs

A typical dynamic system

!("+1) = #(!(") ; $)

A system driven by external data

!("+1) = #(!(") , $("+1); %)

Compact view

!("+1) = #(!("), $("+1); %)

Compact view

!("+1) = #(!("), $("+1); %)

square: one
step time delay

Key: the same # and % for
all time steps

Recurrent neural networks (RNN)

Recurrent neural networks

• Use the same computational function and parameters across different
time steps of the sequence
• Each time step: takes the input entry and the previous hidden state to

compute the output entry
• Loss: typically computed at every time step

Advantage

• Hidden state: a lossy summary of the past
• Shared functions and parameters: greatly reduce the capacity and

good for generalization in learning
• Explicitly use the prior knowledge that the sequential data can be

processed in the same way at different time step (e.g., NLP)

Advantage

• Hidden state: a lossy summary of the past
• Shared functions and parameters: greatly reduce the capacity and

good for generalization in learning
• Explicitly use the prior knowledge that the sequential data can be

processed by in the same way at different time step (e.g., NLP)

• Yet still powerful (actually universal): any function computable by a
Turing machine can be computed by such a recurrent network of a
finite size (see, e.g., Siegelmann and Sontag (1995))

The problem of exploding/vanishing gradient

• What happens to the magnitude of the gradients as we backpropagate
through many layers?
• If the weights are small, the gradients shrink exponentially.
• If the weights are big the gradients grow exponentially.

• Typical feed-forward neural nets can cope with these exponential effects
because they only have a few hidden layers.
• In an RNN trained on long sequences (e.g. 100 time steps) the gradients

can easily explode or vanish.
• We can avoid this by initializing the weights very carefully.

• Even with good initial weights, its very hard to detect that the current
target output depends on an input from many time-steps ago.
• So RNNs have difficulty dealing with long-range dependencies.

Example: LSTM

General Diagram each line carries an entire
vector, from the output of
one node to the inputs of
others

pink circles represent
pointwise operations,
like vector addition

yellow boxes are learned
neural network layers

Lines merging denote
concatenation

line forking denote its
content being copied and
the copies going to
different locations

The Core Idea Behind LSTMs

• The key to LSTMs is the cell state, the horizontal line running through
the top of the diagram.
• The cell state is kind of like a conveyor belt. It runs straight down the

entire chain, with only some minor linear interactions. It’s very easy
for information to just flow along it unchanged.

The Core Idea Behind LSTMs

• The LSTM does have the ability to remove or add information to the cell
state, carefully regulated by structures called gates.
• Gates are a way to optionally let information through. They are composed

out of
• a sigmoid neural net layer and
• a pointwise multiplication operation.

• The sigmoid layer outputs numbers between zero and one, describing how
much of each component should be let through.
• A value of zero means “let nothing through,”
• A value of one means “let everything through!”

• An LSTM has three of these gates, to protect and control the cell state.

forget gate layer

• The first step in our LSTM is to decide
what information we’re going to throw
away from the cell state.
• 1 represents “completely keep this”
• 0 represents “completely get rid of this.”

input gate layer

• decide what new information we’re going to
store in the cell state.
• First, a sigmoid layer called the “input gate layer”

decides which values we’ll update.
• Next, a tanh layer creates a vector of new

candidate values that could be added to the
state.

• In the next step, we’ll combine these two to
create an update to the state.

update cell state into

• We multiply the old state by , forgetting
the things we decided to forget earlier.
• Then we add . This is the new

candidate values, scaled by how much we
decided to update each state value.

decide what we’re going to output

• First, we run a sigmoid layer which decides
what parts of the cell state we’re going to
output.
• Then, we put the cell state through tanh (to

push the values to be between −1 and 1)
and multiply it by the output of the sigmoid
gate, so that we only output the parts we
decided to.

CNN + RNN

CNNs are used in
modelling problems
related to spatial inputs
like images.

LSTMs are used in
modelling tasks related
to sequences and do
predictions based on
it.

CNN + RNN

• CNN-LSTMs are generally used when their inputs have spatial
structure in their input such as the 2D structure or pixels in an image
or the 1D structure of words in a sentence, paragraph, or document
and also have a temporal structure in their input such as the order of
images in a video or words in text, or require the generation of output
with temporal structure such as words in a textual description.

Training RNN

Training RNN

• Principle: unfold the computational graph, and use backpropagation
• Called back-propagation through time (BPTT) algorithm
• Can then apply any general-purpose gradient-based techniques

Training RNN

• Principle: unfold the computational graph, and use backpropagation
• Called back-propagation through time (BPTT) algorithm
• Can then apply any general-purpose gradient-based techniques

• Conceptually: first compute the gradients of the internal nodes, then
compute the gradients of the parameters

Some Other Variants of RNN

RNN

• Use the same computational function and parameters across different
time steps of the sequence
• Each time step: takes the input entry and the previous hidden state to

compute the output entry
• Loss: typically computed every time step

• Many variants
• Information about the past can be in many other forms
• Only output at the end of the sequence

Example: use the
output at the
previous step

Example:
only output
at the end

Bidirectional RNNs

• Many applications: output at time ! may depend on the whole input
sequence
• Example in speech recognition: correct interpretation of the current

sound may depend on the next few phonemes, potentially even the
next few words

• Bidirectional RNNs are introduced to address this

BiRNNs

Encoder-decoder RNNs

• RNNs: can map sequence to one vector; or to sequence of same
length

• What about mapping sequence to sequence of different length?

• Example: speech recognition, machine translation, question
answering, etc

