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Up to now, 

• Overview of Machine Learning
• Traditional Machine Learning Algorithms
• Deep learning 
• Introduction to Tensorflow
• Introduction to Deep Learning
• Functional view and features
• Backward and forward computation 
• Convolutional neural networks (various layers, regularization, etc)



Topics 

• Sequential data 
• Computational graph 
• Recurrent neural networks (RNN)
• Example: LSTM
• CNN + RNN 
• Training RNN
• Some other variants of RNNs 



Sequential Data



Recurrent neural networks 

• Dates back to (Rumelhart et al., 1986)
• A family of neural networks for handling sequential data, which 

involves variable length inputs or outputs

• Especially, for natural language processing (NLP) and video 
recognition



Sequential data 

• Each data point: A sequence of vectors !("), for 1 ≤ " ≤ #
• Batch data: many sequences with different lengths #
• Label: can be a scalar, a vector, or even a sequence 

• Example
• Sentiment analysis 
• Machine translation
• Video content analysis 



Example: machine translation 



Example: Video Stream



Computational graphs 



A typical dynamic system 

!("+1) = #(!(") ; $) 



A system driven by external data 

!("+1) = #(!(") , $("+1); %) 



Compact view 

!("+1) = #(!("), $("+1); %) 



Compact view 

!("+1) = #(!("), $("+1); %) 

square: one 
step time delay 

Key: the same # and % for 
all time steps 



Recurrent neural networks (RNN) 



Recurrent neural networks 

• Use the same computational function and parameters across different 
time steps of the sequence 
• Each time step: takes the input entry and the previous hidden state to 

compute the output entry 
• Loss: typically computed at every time step 







Advantage 

• Hidden state: a lossy summary of the past
• Shared functions and parameters: greatly reduce the capacity and 

good for generalization in learning 
• Explicitly use the prior knowledge that the sequential data can be 

processed in the same way at different time step (e.g., NLP) 



Advantage 

• Hidden state: a lossy summary of the past
• Shared functions and parameters: greatly reduce the capacity and 

good for generalization in learning 
• Explicitly use the prior knowledge that the sequential data can be 

processed by in the same way at different time step (e.g., NLP) 

• Yet still powerful (actually universal): any function computable by a 
Turing machine can be computed by such a recurrent network of a 
finite size (see, e.g., Siegelmann and Sontag (1995)) 



The problem of exploding/vanishing gradient 

• What happens to the magnitude of the gradients as we backpropagate 
through many layers? 
• If the weights are small, the gradients shrink exponentially. 
• If the weights are big the gradients grow exponentially. 

• Typical feed-forward neural nets can cope with these exponential effects 
because they only have a few hidden layers. 
• In an RNN trained on long sequences (e.g. 100 time steps) the gradients 

can easily explode or vanish. 
• We can avoid this by initializing the weights very carefully. 

• Even with good initial weights, its very hard to detect that the current 
target output depends on an input from many time-steps ago. 
• So RNNs have difficulty dealing with long-range dependencies. 



Example: LSTM



General Diagram each line carries an entire 
vector, from the output of 
one node to the inputs of 
others

pink circles represent 
pointwise operations, 
like vector addition

yellow boxes are learned 
neural network layers

Lines merging denote 
concatenation

line forking denote its 
content being copied and 
the copies going to 
different locations



The Core Idea Behind LSTMs

• The key to LSTMs is the cell state, the horizontal line running through 
the top of the diagram.
• The cell state is kind of like a conveyor belt. It runs straight down the 

entire chain, with only some minor linear interactions. It’s very easy 
for information to just flow along it unchanged.



The Core Idea Behind LSTMs

• The LSTM does have the ability to remove or add information to the cell 
state, carefully regulated by structures called gates. 
• Gates are a way to optionally let information through. They are composed 

out of 
• a sigmoid neural net layer and 
• a pointwise multiplication operation.

• The sigmoid layer outputs numbers between zero and one, describing how 
much of each component should be let through. 
• A value of zero means “let nothing through,” 
• A value of one means “let everything through!”

• An LSTM has three of these gates, to protect and control the cell state.



forget gate layer

• The first step in our LSTM is to decide 
what information we’re going to throw 
away from the cell state.
• 1 represents “completely keep this” 
• 0 represents “completely get rid of this.”



input gate layer

• decide what new information we’re going to 
store in the cell state. 
• First, a sigmoid layer called the “input gate layer” 

decides which values we’ll update. 
• Next, a tanh layer creates a vector of new 

candidate values that could be added to the 
state. 

• In the next step, we’ll combine these two to 
create an update to the state.



update cell state            into 

• We multiply the old state by , forgetting 
the things we decided to forget earlier. 
• Then we add . This is the new 

candidate values, scaled by how much we 
decided to update each state value.



decide what we’re going to output

• First, we run a sigmoid layer which decides 
what parts of the cell state we’re going to 
output. 
• Then, we put the cell state through tanh (to 

push the values to be between −1 and 1) 
and multiply it by the output of the sigmoid 
gate, so that we only output the parts we 
decided to.



CNN + RNN



CNNs are used in 
modelling problems 
related to spatial inputs 
like images.

LSTMs are used in 
modelling tasks related 
to sequences and do 
predictions based on 
it.



CNN + RNN

• CNN-LSTMs are generally used when their inputs have spatial 
structure in their input such as the 2D structure or pixels in an image 
or the 1D structure of words in a sentence, paragraph, or document 
and also have a temporal structure in their input such as the order of 
images in a video or words in text, or require the generation of output 
with temporal structure such as words in a textual description.



Training RNN 



Training RNN 

• Principle: unfold the computational graph, and use backpropagation
• Called back-propagation through time (BPTT) algorithm
• Can then apply any general-purpose gradient-based techniques 



Training RNN 

• Principle: unfold the computational graph, and use backpropagation
• Called back-propagation through time (BPTT) algorithm
• Can then apply any general-purpose gradient-based techniques 

• Conceptually: first compute the gradients of the internal nodes, then 
compute the gradients of the parameters 















Some Other Variants of RNN 



RNN 

• Use the same computational function and parameters across different 
time steps of the sequence 
• Each time step: takes the input entry and the previous hidden state to 

compute the output entry 
• Loss: typically computed every time step 

• Many variants
• Information about the past can be in many other forms 
• Only output at the end of the sequence 



Example: use the 
output at the 
previous step 



Example: 
only output 
at the end 



Bidirectional RNNs 

• Many applications: output at time ! may depend on the whole input 
sequence
• Example in speech recognition: correct interpretation of the current 

sound may depend on the next few phonemes, potentially even the 
next few words 

• Bidirectional RNNs are introduced to address this 



BiRNNs



Encoder-decoder RNNs 

• RNNs: can map sequence to one vector; or to sequence of same 
length 

• What about mapping sequence to sequence of different length? 

• Example: speech recognition, machine translation, question 
answering, etc 




