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Up to now,

* Overview of Machine Learning

* Traditional Machine Learning Algorithms

* Deep learning
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* |-Map, Perfect Map

* Reasoning Patterns (Causal Reasoning, Evidential Reasoning, Intercausal
Reasoning)



Recap: Local Independencies in a BN

* ABN G is a directed acyclic graph whose nodes represent random
variables X,.., X .

* Let Pa(X;) denote parents of X;in G
* Let Non-Desc(X;) denote variables in G that are not descendants of X;

* Then G encodes the following set of conditional independence
assumptions denoted /l(G)

* For each X;: (X; L Non-Desc(X.)| Pa(X.))
* Also known as Local Markov Independencies



Recap: Local Independencies

* Graph G with CPDs is equivalent to a set of independence assertions
P(D,1,G,S,L)=P(D)P(D))P(GID,DP(S|HP(L|G)

* Local Conditional Independence Assertions (starting from leaf nodes):

I(G)={(L 11,D,S1G), Lis conditionally independent of all other nodes given parent G
(S LD,G,LII), Sis conditionally independent of all other nodes given parent 7
(GLSID,D), Even given parents, G is NOT independent of descendant L
(IL Dl ¢), Nodes with no parents are marginally independent
(DLILS|¢)} D is independent of non-descendants 7 and S

* Parents of a variable shield it from probabilistic influence
* Once value of parents known, no influence of ancestors

* Information about descendants can change beliefs about a node
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Can we have the
following
conditional
independence?
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Recap:
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intelligence

« P(d!/g3)=0.629
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probability of high won’t make the IJ_L ‘ G
intelligence probability of high

intelligence lower.



Independencies in Graphs

* A graph structure G encodes a set of conditional independence
assumptions /(G)

* Are there other independencies that we can read-off?

* i.e., are there other independencies that hold for every distribution that
factorizes over G?

* D-separation holds the key



Topics

* Why D-separation?
 What is D-separation?
* Algorithm for D-separation (extended materials)



Why D-separation?



Dependencies and Independencies

* Crucial for understanding network behaviour

* Independence properties are important for answering queries

* Exploited to reduce computation of inference
e Adistribution P that factorizes over G satisfies I(G)



What is D-separation?



D-separation

 Study independence properties for subgraphs (connected triples)

* Analyze complex cases in terms of triples along paths between
variables

* D-separation: a condition / algorithm for answering such queries

* Definition: A procedure d-sep,(X_LY|Z) that given a DAG G, and

sets X, ¥, and Z returns either yes or no, where d-sep(X LY |Z) = Yes
iff (XLY|Z) follows from I(G)



Direct Connection between Xand Y

 Xand Y are correlated regardless of
any evidence about any other variables

* E.g., Feature Y and character X are

correlated
* Grade G and Letter L are correlated T T
* If X and Y are directly connected we ”4\5@-& faf —

can get examples where they influence |
each other regardless of Z £ fos Jos Jos
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Indirect Connection between Xand Y

 Four cases wWhere X and Y are connected via Z

* (a). Indirect causal effect x) (v
* (b). Indirect evidential effect AR
"x.E.f'l I"HE.-'“: la%-r": I".:E-_,.*:I EE |
* (c). Common cause
f"i“x ,*'-1'“&1 _x""‘!f :.!"'_'“*., """3"
e (d). Common effect v w & ¥ 2
(a) (b} (c) (d)

* We will see that first three cases are similar while fourth case (V-
structure) is different



1. Indirect Causal Effect: X->Z->Y

e Cause X cannot influence effect Yif Z
observed

 Observed Z blocks influence

e If Grade observed then | does not influence L

* Intelligence influences Letter if Grade is
unobserved
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Recap:

low grade drastically low grade justifies the
decreases the difficulty

probability of high

intelligence

« P(d!/g3)=0.629
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Causal Chains

= This configuration is a “causal chain” Guaranteed X independent of Z given Y?

P(z,y,z2)

L»—‘\ //// ‘;f’!] P(z|z,y) = P(z. 1)

_ PONP(yNPGI)
‘@@

Pi¢) P(Ne)
X: Low pressure Y: Rain Z: Traffic

= P(z|y)

Yes!

P(CL‘, Yy, Z) — P(a:)P(y|:B)P(z|y) Evidence along the chain “blocks” the

influence (makes “inactive”)



2. Indirect Evidential Effect: Y->7->X

* Evidence X can influence Y via Z only if Zis unobserved
* Observed Z blocks influence

* If Grade unobserved, Letter influences assessment of Intelligence

* Dependency is a symmetric notion
e XL1Y does not hold then YLX does not hold either

CHEY N

Z=Grade
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3. Common Cause:; X<-Z->Y

* X can influence Y if and only if Zis not observed
* Observed Z blocks

* Grade is correlated with SAT score
* But if Intelligence is observed then SAT provides no additional

information .
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Common Cause

= This configuration is a “common cause” = Guaranteed X and Z independent given Y?

Y: Project
due

Project P(:E Y z)
Due! P = 1 I

. P(Np(m\gqp(zm)
. @\vl PR P(Ny)

‘jr Yes!
X: Forums :
bats Z: Lab full
Y Observing the cause blocks influence

between effects. (makes inactive)
P(z,y,z) = P(y)P(zly) P(zly)




4. Common Effect (V-structure) X->7<-Y

e Influence cannot flow on trail X->Z<-Y if Z is not observed
* Observed Z enables
* Opposite to previous 3 cases (Observed Z blocks)

* When G not observed / and D are independent

* When G is observed, I and D are correlated [os[os )\ _— _
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Common Effect

= Last configuration: two causes of one = Are Xand Y independent?

effect (v-structures) » Yes: the ballgame and the rain cause traffic, but

X: Raining Y: Ballgame they are not correlated

| e

> = Are Xand Y independent given Z?

» Still need to prove they must be (try it!)

-
Tl A

* No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

» QObserving an effect activates influence between
possible causes. (makes active!)

)H)/

{ul

Z: Traffic



Recall: Common in Human Reasoning

* Binary Variables
* Fever & Sore Throat can be caused by mono and flu

* When flu is diagnosed probability of mono is reduced (although mono
could still be present)

* It provides an alternative explanation of symptoms

P(m![st)>P(m?[s',f!)

Sore Throat
S



4. Common Effect (V-structure) X->7<-Y

e Grade is not observed
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Example: Common Effect

P(X) =
X: Rammg Y: Ballgame
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Example: Common Effect

P(X)=0.8
X: Raining Y: Ballgame
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Example: Common Effect

P(X)=0.8
X | Y | Z P
X: Raining Y: Ballgame
YTN T TI| T | T 0.076
Tl Yﬁééi T | T|F | 0004
Mm/_,___x (7 5
\ L S 0.576 P(X|Y) = 0.076+0.004
! F F 0.144 0.076+0.004+0.018+0.002
— F|T|F | 0002 - 08
" F F | T 0.090
. ”IT—J-/ ¥ F| F | F 0.009
ack
“ X andY are

independent!



But Suppose Also Know Z=T

P(X) =
X: Raining Y: Ballgame
70 ﬁi

e f——-—>\
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Z: Traffic

@
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X | Y| Z P
+576

T 0??66+ ?52'6+.D18+.090 Tyrjpr,) oo

= 0.652/0.76 T T F 0.004

=0.858 T|F | T 0.576

T | F | F 0.144

F Il T | T 0.018

P(X|Y,Z) = 0.076 F| T | F | 0002

0.076+ 0.018 F F| T 0.090

= 0.8085 F F F 0.005

X and Y are not independent given Z!




Summary of Indirect Connection

e Causal trail: X->Z->Y: active iff Z not observed
e Evidential Trail: X<-Z<-Y: active iff Z is not observed
* Common Cause: X<-Z->Y: active iff Z is not observed

e Common Effect: X->Z<-Y: active iff either Z or one of its descendants
is observed

What is the general case?



The General Case

* General question: in a given BN, are two variables independent (given
evidence)?

e Solution: analyze the graph

* Any complex example can be broken into repetitions of the three
canonical cases



D-Separation

* Query: XT:J-XjHXk“ ey Xkﬂ, }?

* Check all (undirected) paths between X; and X
* |f one or more paths is active, then independence not guaranteed

Xi AX{ Xk, Xi, }

e Otherwise (i.e. if all paths are inactive),
then “D-separated” = independence is guaranteed

Xil Xi{ Xkys oy Xk, }



Active Trail

e When influence can flow from X to Y via Zthen
trail X—Z—Y is active

* Example: Consider Trail D->G<-/->S

e When observed

* Z = {0} :trail is inactive because v-structure D->G<-/is
inactive

« Z ={L}:active (D->G<-I active) since L is descendant of G
« Z ={L,I} :inactive because observing | blocks G<-I->S




D-separation definition

e Let X,Y and Z be three sets of nodes in G.

e X and Y are d-separated given Z denoted d-sepg(X LY |Z) if there is no
active trail between any node XeX and YEY given Z

 That is, nodes in X cannot influence nodes in Y

* Provides notion of separation between nodes in a directed graph
(“directed” separation)



Independencies from D-separation

e Definition o ‘
I(G) = {(XL1Y|Z) : dsepa(X LY |Z)}

* Also called Global Markov independencies |
* Note: Derived purely from graph (using trails) G °

* Example: Global independence using D-separation
« (LLI,D,S|G) € I(G) O
L
* Compare with /local independencies
* For each X:: (X; L Non-Desc(X,) [ Pa(X)))
{(LLI,D,S|G),(SLD,G,LII),(G,S|D,I),(DLI,S|)} C I(G)




Algorithm for D-Separation



Algorithm for D-Separation

* Enumerate all trails between X & Y is inefficient
* No. of trails is exponential with graph size

* Linear time algorithm has two phases
* Algorithm Reachable(G,X,Z) returns nodes reachable from X given Z
* Phase 1 (simple)

* Traverse bottom-up from leaves marking all nodes in Z or descendants in Z; to enable v-
structures

* Phase 2 (subtle)
* Traverse top-down from X to Y, stopping when blocked by a node



Structure Implications

* Given a Bayes net structure, can run d-separation algorithm to build a
complete list of conditional independences that are necessarily true
of the form

Xil Xi{ Xkyy ooy Xk, }

* This list determines the set of probability distributions that can be
represented



Pseudocode

finding nodes reachable from
X given Z via active trails

(ol - B> IS B PR S

Procedure Reachable (

G, Il Bayesian network graph
X, /I Source variable
Z Il Observations

I/ Phase I: Insert all ancestors of Z into V
L «— Z |l Nodes to be visited
A — 0 /I Ancestors of Z
while L 7 0
Select some Y from L
L~ L-{Y}
if Y ¢ A then
L «— LU Pay
A— Au{lY}

/1'Y is ancestor of evidence

/I'Y's parents need to be visited

1

12
13
14
15
16
17

18
19
20
21

22
23
24
25
26
27
28
29
30
31

33

35

Il Phase |I: traverse active trails starting from X

L — {(X.1)}
Ve2§@
R« 0

L ¢

/I (Node,direction) to be visited

/I (Node,direction) marked as visited

/Il Nodes reachable via active trail
while L # ()

Select some (Y. d) from L

L - {(Y,d)}

if (Y.d) € V then
if Y € Z then

R~ RU({Y}
V « VU{(Y,d)}
ifd=land Y & Z then

for each Z € Pay

L— LU{(Z1)}

for each Z € Chy

else if 4

L— LU{(Z))}
| then

if Y € Z then

/I Downward trails to Y's children are active

if Y € A then

return R

for each Z € Chy
L — LU{(Z)])}

for each Z € Pay
L — LU{(Z,1)}

II'Y is reachable
Il Mark (Y, d) as visited

/I Trail up through Y active if Y not in Z
/I Y’s parents to be visited from bottom

II'Y’s children to be visited from top

/I Trails down through Y

/I'Y's children to be visited from top

Il v-structure trails are active

/I Y's parents to be visited from bottom



Example for D-separation algorithm

e Task: Find all nodes reachable from X
 Assume that Yis observed, i.e., YEZ
* Assume algorithm first encounters Y via edge Y -> X

* Any extension of this trail is blocked by Y
* Trail X<-Z->Y<-W is not blocked by Y

* Thus when we encounter Y for the second time via the edge Z->Y we
should not ignore it

 Therefore after the first visit to Y we can mark it as visited

For trails coming from children of Y
Not for purpose of trails coming from parents of Y



l-Equivalence



-Equivalence

* Conditional independence assertion statements can be the same with
different structures

* Two graphs G, and G, are I- equivalent if I(G,)=1(G,)

* Skeleton of a BN graph G is an undirected graph with an edge for
every edge in G

* If two BN graphs have the same set of skeletons and v-structures then
they are l-equivalent

Same skeleton
Same v-structure X=2Y€Z



Bayes Nets Representation Summary

e Bayes nets compactly encode joint distributions

* Guaranteed independencies of distributions can be deduced from BN
graph structure

* D-separation gives precise conditional independence guarantees from
graph alone

e A Bayes’ net’s joint distribution may have further (conditional)
independence that is not detectable until you inspect its specific
distribution



