Machine Learning Overview (continued) and Probability Foundations

Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/

In the last lecture,

- A few applications of machine learning
- define the supervised and unsupervised learning tasks
- consider how to represent instances as fixed-length feature vectors
- understand the concepts (partial)

Topics

- Understand the concepts (continued)
- Random Variables
- Joint and Conditional Distributions
- Independence and Conditional Independence

i.i.d. instances

- we often assume that training instances are *independent and identically distributed* (i.i.d.) – sampled independently from the same unknown distribution
- there are also cases where this assumption does not hold
 - cases where sets of instances have dependencies
 - instances sampled from the same medical image
 - instances from time series
 - etc.
- cases where the learner can select which instances are labeled for training
 - active learning
- the target function changes over time (*concept drift*)

Generalization

- The primary objective in supervised learning is to find a model that *generalizes*
 - one that accurately predicts y for previously unseen x

Can I eat this mushroom that **was not** in my training set?

Model representations

- throughout the semester, we will consider a broad range of representations for learned models, including
 - decision trees
 - neural networks
 - support vector machines
 - Bayesian networks
 - etc.

Mushroom features (from the UCI Machine Learning Repository)

of the *cap-shape* feature

cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s

cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s

cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y

bruises?: bruises=t,no=f

odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty=m,none=n,pungent=p,spicy=s

gill-attachment: attached=a,descending=d,free=f,notched=n

gill-spacing: close=c,crowded=w,distant=d

gill-size: broad=b,narrow=n

gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=o,pink=p,purple=u,red=e, white=w,yellow=y stalk-shape: enlarging=e,tapering=t

stalk-root: bulbous=b,club=c,cup=u,equal=e, rhizomorphs=z,rooted=r,missing=?

stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s

stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s

stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y veil-type: partial=p,universal=u

veil-color: brown=n,orange=o,white=w,yellow=y

ring-number: none=n,one=o,two=t

ring-type: cobwebby=c,evanescent=e,flaring=f,large=l, none=n,pendant=p,sheathing=s,zone=z spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r, orange=o,purple=u,white=w,yellow=y population: abundant=a,clustered=c,numerous=n, scattered=s,several=v,solitary=y habitat: grasses=g,leaves=l,meadows=m,paths=p, urban=u,waste=w,woods=d

A learned decision tree

odor = a; e(400.0)
odor = ct p (192.0)
$odor = f_{1} p (2160, 0)$
dot = 1.0 (2100.0)
odor = 1: e (400.0)
odor = m: p (36.0)
odor = n
spore-print-color = b: e (48.0)
spore-print-color = h: e (48.0)
spore-print-color = k: e (1296.0)
spore-print-color = n; e (1344.0)
spore-print-color = ot e (48.0)
spore-print-color = $r_1 p_1(72, 0)$
spore-print-color = $1.0 (72.0)$
spore-print-color - u. e (0.0)
spore-print-color = w
gill-size = b: e (528.0)
gill-size = n
gill-spacing = c: p (32.0)
gill = spacing = dt e (0, 0)
giii-spacing - u. e (0.0)
gill-spacing = w
gill-spacing = w population = a: e (0.0)
gill-spacing = w population = a: e (0.0) population = c: p (16.0)
gill-spacing = w population = a: e (0.0) population = c: p (16.0) population = n: e (0.0)
gill-spacing = w population = a: e (0.0) population = c: p (16.0) population = n: e (0.0)
gill-spacing = w population = a: e (0.0) population = c: p (16.0) population = n: e (0.0) population = s: e (0.0) population = s: e (0.0)
<pre>gill-spacing = u. e (0.0) gill-spacing = w population = a: e (0.0) population = c: p (16.0) population = n: e (0.0) population = s: e (0.0) population = v: e (48.0)</pre>
gill-spacing = w population = a: e (0.0) population = c: p (16.0) population = n: e (0.0) population = s: e (0.0) population = v: e (48.0) population = y: e (0.0)
gill-spacing = w population = a: e (0.0) population = c: p (16.0) population = n: e (0.0) population = s: e (0.0) population = v: e (48.0) population = y: e (0.0) spore-print-color = y: e (48.0)
<pre>gill-spacing = u. e (0.0) gill-spacing = w population = a: e (0.0) population = c: p (16.0) population = n: e (0.0) population = n: e (0.0) population = s: e (0.0) population = v: e (48.0) population = y: e (0.0) spore-print-color = y: e (48.0) odor = p: p (256.0)</pre>
<pre>gill-spacing = d. e (0.0) gill-spacing = w population = a: e (0.0) population = c: p (16.0) population = n: e (0.0) population = n: e (0.0) population = s: e (0.0) population = v: e (48.0) population = y: e (0.0) spore-print-color = y: e (48.0) odor = p: p (256.0) odor = s: p (576.0)</pre>

if odor=almond, predict edible

if odor=none ∧
 spore-print-color=white ∧
 gill-size=narrow ∧
 gill-spacing=crowded,
predict poisonous

Classification with a learned decision tree

x = <bell,fibrous,brown,false, foul,...>

Unsupervised learning

in unsupervised learning, we're given a set of instances, without y's
 x⁽¹⁾, x⁽²⁾ ... x^(m)

goal: discover interesting regularities/structures/patterns that characterize the instances

- common unsupervised learning tasks
 - clustering
 - anomaly detection
 - dimensionality reduction

Clustering

- given
 - training set of instances $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$... $\mathbf{x}^{(m)}$
- output
 - model $h \in H$ that divides the training set into clusters such that there is intra-cluster similarity and inter-cluster dissimilarity

Clustering example

Anomaly detection

Anomaly detection example

Let's say our model is represented by: 1979-2000 average, ±2 stddev.

Does the data for 2012 look anomalous?

Dimensionality reduction

• given

- training set of instances $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$... $\mathbf{x}^{(m)}$
- output
 - Model $h\in H\;$ that represents each x with a lower-dimension feature vector while still preserving key properties of the data

Dimensionality reduction example

We can represent a face using all of the pixels in a given image More effective method (for many tasks): represent each face as a linear combination of *eigenfaces*

Dimensionality reduction example

• represent each face as a linear combination of *eigenfaces*

$$\mathbf{x}^{(1)} = \langle \alpha_1^{(1)}, \alpha_2^{(1)}, ..., \alpha_{20}^{(1)} \rangle$$
$$+ ... + \alpha_{20}^{(1)} \times \mathbf{x}^{(1)} \times$$

$$\prod_{n=1}^{\infty} = a_{1}^{(2)} \cdot \prod_{n=1}^{\infty} + a_{2}^{(2)} \cdot \prod_{n=1}^{\infty} + \dots + \alpha_{20}^{(2)} \times \prod_{n=1}^{\infty} \mathbf{x}^{(2)} = \left\langle \alpha_{1}^{(2)}, \alpha_{2}^{(2)}, \dots, \alpha_{20}^{(2)} \right\rangle$$

• # of features is now 20 instead of # of pixels in images

Other learning tasks

- later in the semester we'll cover other learning tasks that are not strictly supervised or unsupervised
 - reinforcement learning
 - semi-supervised learning
 - *etc.*

Random Variable

- We have a population of students
 - We want to reason about their grades
 - Random variable: *Grade*
 - *P(Grade)* associates a probability with each outcome *Val(Grade)*={ *A, B, C* }

• If
$$k = |Va|\{X\}|$$
 then $\sum_{i=1}^{k} P(X = x^{i}) = 1$

- Distribution is referred to as a *multinomial*
- If *Val{X}={false,true}* then it is a *Bernoulli* distribution
- *P*(*X*) is known as the marginal distribution of *X*

Joint Distribution

- We are interested in questions involving several random variables
 - Example event: *Intelligence=high* and *Grade=A*
 - Need to consider joint distributions
 - Over a set $\chi = \{X_1, \dots, X_n\}$ denoted by $P(X_1, \dots, X_n)$
 - We use ξ to refer to a full assignment to variables χ , i.e. $\xi \in Val(\chi)$

•	Example	of	joi	int	: di	istri	ibutior	ן
			_		-		-	

and marginal distributions

		Intelligence			
		low	high		
	Α	0.07	0.18	0.25	
Grade	В	0.28	0.09	0.37	
	С	0.35	0.03	0.38	
		0.7	0.3	1	

Conditional Probability

- P(Intelligence | Grade=A) describes the distribution over events describable by Intelligence given the knowledge that student's grade is A
 - It is not the same as the marginal distribution

		Intell		
		low	high	
	Α	0.07	0.18	0.25
Grade	В	0.28	0.09	0.37
	С	0.35	0.03	0.38
		0.7	0.3	1

P(Intelligence=high)=0.3

P(Intelligence=high|Grade=A) = 0.18/0.25 = 0.72

Independent Random Variables

- We expect $P(\alpha | \beta)$ to be different from $P(\alpha)$
 - i.e., β is true changes our probability over α
- Sometimes equality can occur, i.e, $P(\alpha | \beta) = P(\alpha)$
 - i.e., learning that β occurs did not change our probability of α
 - We say event α is independent of event β , denoted

$\alpha \perp \theta$

if $P(\alpha/\beta)=P(\alpha)$ or if $P(\beta)=0$

• A distribution *P* satisfies $(\alpha \perp \beta)$ if and only if $P(\alpha \land \beta) = P(\alpha)P(\beta)$

Conditional Independence

- While independence is a useful property, we don't often encounter two independent events
- A more common situation is when two events are independent given an additional event
 - Reason about student accepted at Stanford or MIT
 - These two are not independent
 - If student admitted to Stanford then probability of MIT is higher
 - If both based on GPA and we know the GPA to be A
 - Then the student being admitted to Stanford does not change probability of being admitted to MIT
 - *P*(*MIT*|*Stanford*,*Grade A*)=*P*(*MIT*|*Grade A*)
 - i.e., MIT is conditionally independent of Stanford given Grade A