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In the last lecture, 

• A few applications of machine learning
• define the supervised and unsupervised learning tasks 
• consider how to represent instances as fixed-length feature vectors 
• understand the concepts (partial)



Topics 

• Understand the concepts (continued)
• Random Variables
• Joint and Conditional Distributions
• Independence and Conditional Independence



i.i.d. instances 

• we often assume that training instances are independent and identically 
distributed (i.i.d.) – sampled independently from the same unknown 
distribution 
• there are also cases where this assumption does not hold 

• cases where sets of instances have dependencies 
• instances sampled from the same medical image 
• instances from time series
• etc. 

• cases where the learner can select which instances are labeled for training 
• active learning

• the target function changes over time (concept drift) 



Generalization 

• The primary objective in supervised learning is to find a model that 
generalizes 
• one that accurately predicts y for previously unseen x 

Can I eat this 
mushroom that was 
not in my training set? 



Model representations 

• throughout the semester, we will consider a broad range of 
representations for learned models, including 
• decision trees 
• neural networks 
• support vector machines 
• Bayesian networks 
• etc. 



Mushroom features (from the UCI Machine 
Learning Repository) 



A learned decision tree 



Classification with a learned decision tree 

x = <bell,fibrous,brown,false, 
foul,...> 

y = ?



Unsupervised learning 

• in unsupervised learning, we’re given a set of instances, without y’s 
x(1),x(2) ... x(m)

goal: discover interesting regularities/structures/patterns that 
characterize the instances 

• common unsupervised learning tasks
• clustering 
• anomaly detection 
• dimensionality reduction 



Clustering 

• given 
• training set of instances x(1) , x(2) ... x(m) 

• output 
• model that divides the training set into clusters such that there is 

intra-cluster similarity and inter-cluster dissimilarity 



Clustering example 



Anomaly detection 



Anomaly detection example 

Let’s say our model 
is represented by: 
1979-2000 average, 
±2 stddev. 

Does the data for 
2012 look 
anomalous?



Dimensionality reduction 

• given 
• training set of instances x(1) , x(2) ... x(m) 

• output 
• Model    that represents each x with a lower-dimension feature vector 

while still preserving key properties of the data 



Dimensionality reduction example 

We can represent a face 
using all of the pixels in a 
given image 

More effective method (for many 
tasks): represent each face as a 
linear combination of eigenfaces 



Dimensionality reduction example 

• represent each face as a linear combination of eigenfaces 

• # of features is now 20 instead of # of pixels in images 



Other learning tasks 

• later in the semester we’ll cover other learning tasks that are not 
strictly supervised or unsupervised 
• reinforcement learning 
• semi-supervised learning 
• etc. 



Random Variable 

• We have a population of students 
• We want to reason about their grades 
• Random variable: Grade
• P(Grade) associates a probability with each outcome Val(Grade)={ A, B, C }

• If k=|Val{X}| then  

• Distribution is referred to as a multinomial
• If Val{X}={false,true} then it is a Bernoulli distribution 

• P(X) is known as the marginal distribution of X



Joint Distribution 

• We are interested in questions involving several random variables 
• Example event: Intelligence=high and Grade=A 
• Need to consider joint distributions 
• Over a set χ={X1,..,Xn} denoted by P(X1,..,Xn)
• We use ξ to refer to a full assignment to variables χ, i.e. ξ ε Val(χ) 

• Example of joint distribution
• and marginal distributions 



Conditional Probability 

• P(Intelligence|Grade=A) describes the distribution over events 
describable by Intelligence given the knowledge that student’s grade 
is A 
• It is not the same as the marginal distribution 



Independent Random Variables 

• We expect P(α|β) to be different from P(α) 
• i.e., β is true changes our probability over α 

• Sometimes equality can occur, i.e, P(α|β)=P(α) 
• i.e., learning that β occurs did not change our probability of α
• We say event α is independent of event β, denoted 

α⊥β
if P (α|β)=P (α) or if P (β)=0 

• A distribution P satisfies (α⊥β) if and only if P(α∧β)=P(α)P(β) 



Conditional Independence 

• While independence is a useful property, we don’t often encounter 
two independent events 
• A more common situation is when two events are independent given 

an additional event 
• Reason about student accepted at Stanford or MIT 
• These two are not independent 

• If student admitted to Stanford then probability of MIT is higher 
• If both based on GPA and we know the GPA to be A 
• Then the student being admitted to Stanford does not change probability of being 

admitted to MIT 
• P(MIT|Stanford,Grade A)=P(MIT|Grade A) 
• i.e., MIT is conditionally independent of Stanford given Grade A 


