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In the last week’s lectures,

* A few applications of machine learning
* Supervised vs. unsupervised learning
* Representation of instances as vectors

e Joint and conditional distribution



Topics of today

* Querying Joint Probability Distributions
* Probability query
* MAP query

* Scalars, vectors, matrices, tensors
* Multiplying matrices/vectors



Querying Joint Probability
Distributions



Recap: Marginal, joint, conditional probability

* Marginal probability: the probability of an event occurring (p(A)), it may be thought of as an
unconditional probability. It is not conditioned on another event.

 Example: the probability that a card drawn is red (p(red) = 0.5).
* Another example: the probability that a card drawn is a 4 (p(four)=1/13).

* Joint probability: p(A and B). The probability of event A and event B occurring. It is the
probability of the intersection of two or more events. The probability of the intersection of A and

B may be written p(A N B).

 Example: the probabilitpthat a card is a four and red =p(four and red) = 2/52=1/26. (There are two red fours
in a deck of 52, the 4 of hearts and the 4 of diamonds).

* Conditional probability: p(A|B) is the probability of event A occurring, given that event B occurs.

* Example: given that you drew a red card, what’s the probability that it’s a four (p(four|red))=2/26=1/13. So
out of the 26 red cards (given a red card), there are two fours so 2/26=1/13.



Recap: Chain Rules

chain rule (also called the general product rulell2) permits the calculation of any member of the joint
distribution of a set of random variables using only conditional probabilities.

P(An_,...,A]) - P(AnlAn.—la---aAl) 'P(An.—la---aAl)

P(Ay4, A3, Ay, A)) =P(Ay | A3,A3,A;)-P(A3 | A3, A1) -P(Ay | Ay) - P(4)


https://en.wikipedia.org/wiki/Chain_rule_(probability)
https://en.wikipedia.org/wiki/Chain_rule_(probability)
https://en.wikipedia.org/wiki/Joint_distribution
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Conditional_probabilities

Recap: Max vs. argmax

* Let x be in a range [a,b] and f be a function over [a,b], we have
* max f(x) to represent the maximum value of f(x) as x varies through [a,b]
* argmax f(x) to represent the value of x at which the maximum is attained

* max, sin(x) /\ /\ /
=1 I e —

e argmax, sin(x) / \/ \/ U
= {(0.5+2n)*pi | nis integer } ,'

={..., -1.5pi, 0.5pi, 2.5pi, ...}




Query Types

* Probability Queries
e Given evidence (the values of a subset of random variables),
e compute distribution of another subset of random variables

* MAP Queries

* Maximum a posteriori probability

* Also called MPE (Most Probable Explanation)
* What is the most likely setting of a subset of random variables

* Marginal MAP Queries

* When some variables are known



Probability Queries

* Most common type of query is a probability query

* Query has two parts
e Evidence: a subset E of variables and their instantiation e
* Query Variables: a subset Y of random variables

* Inference Task: P(Y|E=e)

* Posterior probability distribution over values y of Y
e Conditioned on the fact E=e

* Can be viewed as Marginal over Y in distribution we obtain by conditioning on

e
P(Y =y, ,E=e)
« Marginal Probability Estimation PX =ylE=¢€)= P(E =e)




MAP Queries (Most Probable Explanation)

* Finding a high probability assignment to some subset of variables
* Most likely assignment to all non-evidence variables W=V —E

MAP(W | e) = arg max P(w,e)

i.e., value of w for which P(w,e) is maximum

* Difference from probability query
* Instead of a probability we get the most likely value for all remaining variables



Example of MAP Queries

* Medical Diagnosis Problem
* Diseases (A) cause Symptoms (B)
e Two possible diseases: Mono and Flu
* Two possible symptoms: Headache and Fever

. P(Symptom|Disease
P(Diseases) ° Disease (Symp | )
a’ al P(B|4) b’ bl
o Symptom al 0.5 0.5
\

Notation for probabilistic graphical models, to be
introduced in later part of this module



P(Diseases)

Example of MAP Queries

a’ a!
0,4 0.6
* Medical Diagnosis Problem
* Diseases (A) cause Symptoms (B) ° Disease
e Two possible diseases: Mono and Flu
* Two possible symptoms: Headache and Fever
° Symptom

* Q1: Most likely disease P(A)?

P(Symptom|Disease)
P(B|A) b’ b!
a’ 0.1 0.9
al 0.5 0.5

MAP(A) =argmax, A =a!



Example of MAP Queries

P(Diseases) ° N P(Symptom|Disease)
@ @ PBl4) b b
0,4 0.6 a’ 0.1 0.9

o Symptom a’ 0.5 0.5

P(AB) = P(BIA) P(A _-

0.04 0.36
al 0.3 0.3



P(Diseases)

Example of MAP Queries

a’ a!
0,4 0.6
* Medical Diagnosis Problem
* Diseases (A) cause Symptoms (B) ° Disease
e Two possible diseases: Mono and Flu
* Two possible symptoms: Headache and Fever
° Symptom

* Q2: Most likely disease and symptom P(A,B)?
P(Symptom|Disease)
P(B|A) b’ b!

a’ 0.1 0.9
= arg max, ,{0.04,0.36,0.3,0.3} al 0.5 0.5

MAP(A, B) = argmax, ;, P(A, B)
= argmax, , P(B | A)P(A)

=a', b!



Marginal MAP Query

* We looked for highest joint probability assignment of disease and
symptom

e Can look for most likely assignment of disease variable only

e Query is not all remaining variables but a subset of them

* Yis query, evidence is E=e
Task is to find most likely assignment to Y:

MAP(Y | e) = arg max P(y|e)

MAP(Y | e) = max E Ply,z| e
( | ) arg;l 4 (y | )



P(Diseases)

Example of MAP Queries

a’ a!
0,4 0.6
* Medical Diagnosis Problem
* Diseases (A) cause Symptoms (B) ° Disease
e Two possible diseases: Mono and Flu
* Two possible symptoms: Headache and Fever
o Symptom

* Q3: Most likely symptom P(B)? .
YR P(Symptom|Disease)

P(B|A) b’ b!
a’ 0.1 0.9
al 0.5 0.5



P(Diseases)

0,4 0.6

° Disease

Example of MAP Queries

* Q3: Most likely symptom P(B)?

MAP(B) = arg max P(b) = arg mgxz P(a, b) o Symptom
a
_ — Rl .
= arg maxp{0.34,0.66} = b P(SymptomlDlsease)
P(B b? b!
N W
a0 0.04 0.36 a’ 0.1 0.9

P(A,B) = P(A)P(B|A
(A/8) = PAIP(BIA al 0.3 0.3 al 0.5 0.5



Marginal MAP Assignments

* They are not monotonic

* Most likely assignment MAP(Y,|e) might be completely different from
assignment to Y, in MAP({Y,,Y,}|e)
* Ql: Most likely disease P(A)?
 Al: Flu
* Q2: Most likely disease and symptom P(A,B)?
* A2: Mono and Fever

* Thus we cannot use a MAP query to give a correct answer to a
marginal map query



Marginal MAP more Complex than MAP

e Contains both summations (like in probability queries) and
maximizations (like in MAP queries)

MAP(B) = arg max P(b) = arg max Za: P(a, b)
= arg maxp{0.34,0.66} = b'



Linear Algebra For Machine Learning



Scalar

* Single number

* Represented in lower-case italic x

* E.g., let T € R be the slope of the line
* Defining a real-valued scalar

* E.g., let n € N be the number of units
* Defining a natural number scalar



Vector

* An array of numbers

* Arranged in order X =
* Each no. identified by an index

* Vectors are shown in lower-case bold

* If each elementisin R then xis in R"

* We think of vectors as points in space
* Each element gives coordinate along an axis




Matrix

e 2-D array of numbers
* Each element identified by two indices
* Denoted by bold typeface A
* Elements indicated as A, ,
"Ee A — _A1,1 A1,2-
Az1 Ao

e Ali:] is ith row of A, A[:j] is jth column of A
* If A has shape of height m and width n with real-values then A = R™*"




Tensor

* Sometimes need an array with more than two axes

* An array arranged on a regular grid with variable number of axes is
referred to as a tensor

* Denote a tensor with bold typeface: A
* Element (i,j,k) of tensor denoted by A, ;,



Transpose of a Matrix

* Mirror image across principal diagonal

11 L12 I13 11 T21

T
A= |Zo1 Toy Toz| = A" = [T12 Too
| £31 X32 L33 | L13 423

* Vectors are matrices with a single column
e Often written in-line using transpose
_ T
X =[x},..,X,]

e Since a scalar is a matrix with one element a=a’




Linear Transformation

Ax =D

- where A € R™*™ and b c R"

Allxl i

— A12.’E2 T oea

A21371 i

Aniz1 + Anaze + ... + Annyn = by

— AQQIEQ T aes

- A1nTyn = b1

- Aopn @y = bo

n equations inn
unknowns



Linear Transformation

Ax =D
« where A € R"*™ and b € R"
* More explicitly

Al 1 o Al,n — xr - — b' - . .
* | ‘ Can view A as a linear
A= . : - T » b= . H
transformation of vector x
A . A X b
n.l nn i n | i n | to vector b
nxn nXxl nXl

* Sometimes we wish to solve for the unknowns x ={x,,..,x,} when A
and b provide constraints



l[dentity and Inverse Matrices

* Matrix inversion is a powerful tool to analytically solve Ax=b
* Needs concept of Identity matrix
* [dentity matrix does not change value of vector

* when we multiply the vector by identity matrix
* Denote identity matrix that preserves n-dimensional vectors as I»
* Formally I, € R™"and Vx €R", | x = X
* Example of /5

— —

o O =
o = O
= O O




Matrix Inverse

* Inverse of square matrix A defined as A™A=/,
 We can now solve Ax=b as follows:

Ax=b
A1Ax = A1p

|, x=A"1b
x=A"1b
* This depends on being able to find A

o |f A1 exists there are several methods for finding it



Solving Simultaneous equations

-« Ax=b

 Two closed-form solutions
* Matrix inversion x=A1b
e Gaussian elimination



Norms

e Used for measuring the size of a vector
* Norms map vectors to non-negative values

* Norm of vector x is distance from origin to x
* |tis any function f that satisfies:

f(x)=0=x=0
f(x+y)<_1f(x)+f(y) Triangle Inequality
VaelR f(ax)=‘a‘f(x)




L” Norm

e Definition

1
|z||p = Z\-’Ez\p P



L” Norm

e Definition Ha:Hp = (Z |Qj1|p)%
e [2Norm '

 Called Euclidean norm, written simply as | |IE| ‘

e Squared Euclidean norm is same as a:Ta:

lzlz = \/Z\a:z-w
12

=Vzlzx




L” Norm

e Definition Ha:Hp = (Z |Qj1|p)%
e [INorm i
 also called Manhattan distance

|z|l1 = )_; |z



L” Norm

e Definition Ha:Hp = (Z |ajz|p)%
« L Norm i

* also called max norm

[Zllc = max;|z;



Norms of two-dimensional Point
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‘ |Ix]]1 = 3+4=5

lIxI12 = /32 +42 =5

| 1x| |oo = max{3,4} =4
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Size of a Matrix

* Frobenius norm

lAllr = (Q_AZ,)?
i

* |t is analogous to L norm of a vector



Image distance

11 21,2 --- T1,32 Yia Yi2 .- Y1,32
I2.1 o2 ... X232 Y21 Y22 ... Y2,32
| 32,1 *32,2 --. I3232] | Y32,1 Y32,2 ... Y32,32]

L! distance between X and Y: Z |2i,5] = Z |%i,5 — Yigl
1,] 1,]

L2 distance between X and Y: 23223 = ZJ(M ~Yij)?

<1,1 21,2 .-+ Z1,32
— 22,1 222 ... 22,32
| ©32,1 <32,2 ... 232,32

L° distance between X and Y:

max |z; ;| = max T35 — Yi

b ’



