Probability Foundation (Continued) and Linear Algebra for Machine Learning

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Demonstrators

- Jacopo Castellini
- Cameron Hargreaves
- Elektra Kypridemou
- Themistoklis Melissourgos

In the last week's lectures,

- A few applications of machine learning
- Supervised vs. unsupervised learning
- Representation of instances as vectors
- Joint and conditional distribution

Topics of today

- Querying Joint Probability Distributions
 - Probability query
 - MAP query
- Scalars, vectors, matrices, tensors
- Multiplying matrices/vectors

Querying Joint Probability Distributions

Recap: Marginal, joint, conditional probability

- **Marginal probability**: the probability of an event occurring (p(A)), it may be thought of as an unconditional probability. It is not conditioned on another event.
 - Example: the probability that a card drawn is red (p(red) = 0.5).
 - Another example: the probability that a card drawn is a 4 (p(four)=1/13).
- Joint probability: p(A and B). The probability of event A and event B occurring. It is the
 probability of the intersection of two or more events. The probability of the intersection of A and
 B may be written p(A ∩ B).
 - Example: the probability that a card is a four and red =p(four and red) = 2/52=1/26. (There are two red fours in a deck of 52, the 4 of hearts and the 4 of diamonds).
- **Conditional probability**: p(A|B) is the probability of event A occurring, given that event B occurs.
 - Example: given that you drew a red card, what's the probability that it's a four (p(four|red))=2/26=1/13. So out of the 26 red cards (given a red card), there are two fours so 2/26=1/13.

Recap: Chain Rules

chain rule (also called the **general product rule**^{[1][2]}) permits the calculation of any member of the joint <u>distribution</u> of a set of <u>random variables</u> using only <u>conditional probabilities</u>.

$$\mathrm{P}(A_n,\ldots,A_1)=\mathrm{P}(A_n|A_{n-1},\ldots,A_1)\cdot\mathrm{P}(A_{n-1},\ldots,A_1)$$

 $P(A_4, A_3, A_2, A_1) = P(A_4 \mid A_3, A_2, A_1) \cdot P(A_3 \mid A_2, A_1) \cdot P(A_2 \mid A_1) \cdot P(A_1)$

Recap: Max vs. argmax

- Let x be in a range [a,b] and f be a function over [a,b], we have
 - max f(x) to represent the maximum value of f(x) as x varies through [a,b]
 - argmax f(x) to represent the value of x at which the maximum is attained

- max_x sin(x) = 1
- argmax_x sin(x)

 = {(0.5+2n)*pi | n is integer }
 = {..., -1.5pi, 0.5pi, 2.5pi, ...}

Query Types

- Probability Queries
 - Given evidence (the values of a subset of random variables),
 - compute distribution of another subset of random variables
- MAP Queries
 - Maximum a posteriori probability
 - Also called MPE (*Most Probable Explanation*)
 - What is the most likely setting of a subset of random variables
 - Marginal MAP Queries
 - When some variables are known

Probability Queries

- Most common type of query is a probability query
- Query has two parts
 - *Evidence*: a subset *E* of variables and their instantiation *e*
 - *Query Variables*: a subset *Y* of random variables
- Inference Task: P(Y|E=e)
 - Posterior probability distribution over values y of Y
 - *Conditioned* on the fact *E=e*
 - Can be viewed as Marginal over Y in distribution we obtain by conditioning on e
- Marginal Probability Estimation $P(Y = y_i | E = e) = \frac{P(Y = y_i, E = e)}{P(E = e)}$

MAP Queries (Most Probable Explanation)

- Finding a high probability assignment to some subset of variables
- Most likely assignment to all non-evidence variables W = V E

 $MAP(W | e) = \arg \max_{w} P(w, e)$

i.e., value of w for which P(w,e) is maximum

- Difference from probability query
 - Instead of a probability we get the most likely value for all remaining variables

- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever

introduced in later part of this module

- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever
- Q1: Most likely disease P(A)?

$$MAP(A) = \arg\max_a A = a^1$$

P(B A)	b ⁰	b ¹
a^0	0.1	0.9
a^{I}	0.5	0.5

P(Diseases) a⁰ a¹ 0,4 0.6

P(B A)	b ⁰	b ¹
a^0	0.1	0.9
a^{I}	0.5	0.5

P(A,B)	b ⁰	b ¹
a ⁰	0.04	0.36
a ¹	0.3	0.3

- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever
- Q2: Most likely disease and symptom P(A,B)?

P(B A)	b ⁰	b ¹
a^0	0.1	0.9
a^{I}	0.5	0.5

Marginal MAP Query

- We looked for highest joint probability assignment of disease and symptom
- Can look for most likely assignment of disease variable only
- Query is not all remaining variables but a subset of them
 - Y is query, evidence is E=e Task is to find most likely assignment to Y:

$$MAP(Y | e) = \arg \max_{y} P(y | e)$$

• If *Z=X-Y-E*

$$MAP(Y \mid e) = \arg \max_{y} \sum_{z} P(y, z \mid e)$$

- Medical Diagnosis Problem
 - Diseases (A) cause Symptoms (B)
 - Two possible diseases: Mono and Flu
 - Two possible symptoms: Headache and Fever
- Q3: Most likely symptom P(B)?

P(B A)	b ⁰	b ¹
a^0	0.1	0.9
a^{I}	0.5	0.5

• Q3: Most likely symptom P(B)?

P(A,B) = P(A)P(B|A)

$$MAP(B) = \arg \max_{b} P(b) = \arg \max_{b} \sum_{a} P(a, b)$$

= $\arg \max_{b} \{0.34, 0.66\} = b^{1}$

P(A,B)	b ⁰	b ¹
a ⁰	0.04	0.36
a1	0.3	0.3

P(B A)	b ⁰	b ¹
a^0	0.1	0.9
a^{I}	0.5	0.5

Marginal MAP Assignments

- They are not monotonic
- Most likely assignment MAP(Y₁|e) might be completely different from assignment to Y₁ in MAP({Y₁,Y₂}|e)
 - Q1: Most likely disease P(A)?
 - A1: Flu
 - Q2: Most likely disease and symptom P(A,B)?
 - A2: Mono and Fever
- Thus we cannot use a MAP query to give a correct answer to a marginal map query

Marginal MAP more Complex than MAP

 Contains both summations (like in probability queries) and maximizations (like in MAP queries)

$$MAP(B) = \arg \max_{b} P(b) = \arg \max_{b} \sum_{a} P(a, b)$$
$$= \arg \max_{b} \{0.34, 0.66\} = b^{1}$$

Linear Algebra For Machine Learning

Scalar

- Single number
- Represented in lower-case italic x
 - E.g., let $x \in \mathbb{R}$ be the slope of the line
 - Defining a real-valued scalar
 - E.g., let $n \in \mathbb{N}$ be the number of units
 - Defining a natural number scalar

Vector

- An array of numbers
- Arranged in order
- Each no. identified by an index
- Vectors are shown in lower-case bold
- If each element is in R then x is in R^n
- We think of vectors as points in space
 - Each element gives coordinate along an axis

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \Rightarrow \mathbf{x}^T = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$$

Matrix

- 2-D array of numbers
- Each element identified by two indices
- Denoted by bold typeface **A**
- Elements indicated as $A_{m,n}$

• E.g.,
$$\mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}$$

- *A*[i:] is *i*th row of *A*, *A*[:j] is *j*th column of *A*
- If A has shape of height m and width n with real-values then $\mathtt{A} = \mathbb{R}^{m imes n}$

Tensor

- Sometimes need an array with more than two axes
- An array arranged on a regular grid with variable number of axes is referred to as a tensor
- Denote a tensor with bold typeface: A
- Element (*i*,*j*,*k*) of tensor denoted by A_{*i*,*j*,*k*}

Transpose of a Matrix

• Mirror image across principal diagonal

$$A = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \end{bmatrix}$$

- Vectors are matrices with a single column
 - Often written in-line using transpose

$$\mathbf{x} = [x_1, \dots, x_n]^{\mathrm{T}}$$

• Since a scalar is a matrix with one element $a=a^{T}$

Linear Transformation

 $A\mathbf{x} = \mathbf{b}$

- where $A \in \mathtt{R}^{n imes n}$ and $\mathtt{b} \in \mathtt{R}^n$

$$A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n = b_n$$

Linear Transformation

$A\mathbf{x} = \mathbf{b}$

- where $A \in \mathtt{R}^{n imes n}$ and $\mathtt{b} \in \mathtt{R}^n$
- More explicitly

Can view A as a *linear transformation* of vector **x** to vector **b**

Sometimes we wish to solve for the unknowns x ={x₁,..,x_n} when A and b provide constraints

Identity and Inverse Matrices

- Matrix inversion is a powerful tool to analytically solve Ax=b
- Needs concept of Identity matrix
- Identity matrix does not change value of vector
- when we multiply the vector by identity matrix
 - Denote identity matrix that preserves n-dimensional vectors as In
 - Formally $I_n \in \mathbb{R}^{n \times n}$ and $\forall \mathbf{x} \in \mathbb{R}^n$, $I_n \mathbf{x} = \mathbf{x}$
 - Example of I₃

$$\left[\begin{array}{rrrrr}1&0&0\\0&1&0\\0&0&1\end{array}\right]$$

Matrix Inverse

- Inverse of square matrix A defined as $A^{-1}A = I_n$
- We can now solve *Ax=b* as follows:

Ax = b $A^{-1}Ax = A^{-1}b$ $I_n x = A^{-1}b$ $x = A^{-1}b$

- This depends on being able to find A⁻¹
- If A⁻¹ exists there are several methods for finding it

Solving Simultaneous equations

- A*x* = *b*
- Two closed-form solutions
 - Matrix inversion **x**=A⁻¹**b**
 - Gaussian elimination

Norms

- Used for measuring the size of a vector
- Norms map vectors to non-negative values
- Norm of vector **x** is distance from origin to **x**
 - It is any function *f* that satisfies:

$$f(\mathbf{x}) = 0 \Rightarrow \mathbf{x} = 0$$

$$f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y}) \quad \text{Triangle Inequality}$$

$$\forall \alpha \in \mathbb{R} \quad f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$$

Definition

$$||x||_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$$

- Definition $||x||_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$ L^2 Norm
 - - Called Euclidean norm, written simply as ||x||Squared Euclidean norm is same as $x^T x$

$$||x||_2 = \sqrt{\sum_i |x_i|^2}$$

$$=\sqrt{x^T x}$$

- Definition $||x||_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$ L^1 Norm \widehat{i}
- *L*¹ Norm
 - also called Manhattan distance

$$||x||_1 = \sum_i |x_i|$$

- Definition $||x||_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$ L^{∞} Norm
- - also called max norm

$$|x||_{\infty} = \max_i |x_i|$$

Norms of two-dimensional Point

X = (3,4)

 $||\mathbf{x}||_1 = 3+4=5$ $||\mathbf{x}||_1 = \sum_i |x_i|$

$$||\mathbf{x}||_{2} = \sqrt{3^{2} + 4^{2}} = 5 \qquad ||x||_{2} = \sqrt{\sum_{i} |x_{i}|^{2}}$$
$$||\mathbf{x}||_{\infty} = \max\{3, 4\} = 4 \qquad ||x||_{\infty} = \max_{i} |x_{i}|$$

Size of a Matrix

• Frobenius norm

$$||A||_F = (\sum_{i,j} A_{i,j}^2)^{\frac{1}{2}}$$

• It is analogous to L^2 norm of a vector

Image distance

				-					=				
$\begin{bmatrix} x_{1,1} \\ x_{2,1} \end{bmatrix}$	$x_{1,2} \ x_{22}$	 	$x_{1,32} \ x_{2,32}$		$\left[\begin{array}{c} y_{1,1} \\ y_{2,1} \end{array} \right.$	$egin{array}{c} y_{1,2} \ y_{22} \end{array}$	 	$\left[egin{smallmatrix} y_{1,32} \ y_{2,32} \end{array} ight]$	_	$\begin{bmatrix} z_{1,1} \\ z_{2,1} \end{bmatrix}$	$egin{array}{c} z_{1,2} \ z_{22} \end{array}$		$z_{1,32} \ z_{2,32}$
	:	·.	•	_	:	:	·	:	—		÷	·	•
$x_{32,1}$	$x_{32,2}$		$x_{32,32}$ _		$y_{32,1}$	$y_{32,2}$	•••	$y_{32,32}$		$z_{32,1}$	$z_{32,2}$	•••	$z_{32,32}$

L¹ distance between X and Y

Y:
$$\sum_{i,j} |z_{i,j}| = \sum_{i,j} |x_{i,j} - y_{i,j}|$$

L² distance between X and Y: $\sqrt{\sum_{i,j} z_{i,j}^2} = \sqrt{\sum_{i,j} (x_{i,j} - y_{i,j})^2}$

 L^∞ distance between X and Y:

 $\max_{i,j} |z_{i,j}| = \max_{i,j} |x_{i,j} - y_{i,j}|$