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In the last week’s lectures, 

• A few applications of machine learning
• Supervised vs. unsupervised learning
• Representation of instances as vectors 
• Joint and conditional distribution



Topics of today 

• Querying Joint Probability Distributions 
• Probability query
• MAP query 

• Scalars, vectors, matrices, tensors 
• Multiplying matrices/vectors



Querying Joint Probability 
Distributions 



Recap: Marginal, joint, conditional probability

• Marginal probability: the probability of an event occurring (p(A)), it may be thought of as an 
unconditional probability. It is not conditioned on another event.
• Example: the probability that a card drawn is red (p(red) = 0.5).
• Another example: the probability that a card drawn is a 4 (p(four)=1/13).

• Joint probability: p(A and B). The probability of event A and event B occurring. It is the 
probability of the intersection of two or more events. The probability of the intersection of A and 
B may be written p(A ∩ B). 
• Example: the probability that a card is a four and red =p(four and red) = 2/52=1/26. (There are two red fours 

in a deck of 52, the 4 of hearts and the 4 of diamonds).

• Conditional probability: p(A|B) is the probability of event A occurring, given that event B occurs. 
• Example: given that you drew a red card, what’s the probability that it’s a four (p(four|red))=2/26=1/13. So 

out of the 26 red cards (given a red card), there are two fours so 2/26=1/13.



Recap: Chain Rules

chain rule (also called the general product rule[1][2]) permits the calculation of any member of the joint 
distribution of a set of random variables using only conditional probabilities.

https://en.wikipedia.org/wiki/Chain_rule_(probability)
https://en.wikipedia.org/wiki/Chain_rule_(probability)
https://en.wikipedia.org/wiki/Joint_distribution
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Conditional_probabilities


Recap: Max vs. argmax

• Let x be in a range [a,b] and f be a function over [a,b], we have 
• max f(x) to represent the maximum value of f(x) as x varies through [a,b] 

• argmax f(x) to represent the value of x at which the maximum is attained

• maxx sin(x) 

= 1

• argmaxx sin(x) 

= {(0.5+2n)*pi | n is integer }

= {…, -1.5pi, 0.5pi, 2.5pi, …}



Query Types 

• Probability Queries
• Given evidence (the values of a subset of random variables), 
• compute distribution of another subset of random variables

• MAP Queries
• Maximum a posteriori probability 
• Also called MPE (Most Probable Explanation) 

• What is the most likely setting of a subset of random variables
• Marginal MAP Queries

• When some variables are known 



Probability Queries 

• Most common type of query is a probability query 
• Query has two parts 
• Evidence: a subset E of variables and their instantiation e 
• Query Variables: a subset Y of random variables  

• Inference Task: P(Y|E=e)
• Posterior probability distribution over values y of Y 
• Conditioned on the fact E=e 
• Can be viewed as Marginal over Y in distribution we obtain by conditioning on 

e 

• Marginal Probability Estimation 



MAP Queries (Most Probable Explanation) 

• Finding a high probability assignment to some subset of variables 
• Most likely assignment to all non-evidence variables W = V – E 

i.e., value of w for which P(w,e) is maximum 

• Difference from probability query 
• Instead of a probability we get the most likely value for all remaining variables 



Example of MAP Queries 

• Medical Diagnosis Problem 
• Diseases (A) cause Symptoms (B) 
• Two possible diseases: Mono and Flu 
• Two possible symptoms: Headache and Fever

Notation for probabilistic graphical models, to be 
introduced in later part of this module



Example of MAP Queries 

• Medical Diagnosis Problem 
• Diseases (A) cause Symptoms (B) 
• Two possible diseases: Mono and Flu 
• Two possible symptoms: Headache and Fever

• Q1: Most likely disease P(A)? 



Example of MAP Queries

P(A,B) = P(B|A) P(A) P(A,B) b0 b1

a0 0.04 0.36
a1 0.3 0.3



Example of MAP Queries 

• Medical Diagnosis Problem 
• Diseases (A) cause Symptoms (B) 
• Two possible diseases: Mono and Flu 
• Two possible symptoms: Headache and Fever

• Q2: Most likely disease and symptom P(A,B)? 



Marginal MAP Query 

• We looked for highest joint probability assignment of disease and 
symptom 
• Can look for most likely assignment of disease variable only 
• Query is not all remaining variables but a subset of them 
• Y is query, evidence is E=e

Task is to find most likely assignment to Y: 

• If Z=X-Y-E 



Example of MAP Queries 

• Medical Diagnosis Problem 
• Diseases (A) cause Symptoms (B) 
• Two possible diseases: Mono and Flu 
• Two possible symptoms: Headache and Fever

• Q3: Most likely symptom P(B)? 



Example of MAP Queries 

• Q3: Most likely symptom P(B)? 

P(A,B) b0 b1

a0 0.04 0.36
a1 0.3 0.3

P(A,B) = P(A)P(B|A)



Marginal MAP Assignments 

• They are not monotonic 
• Most likely assignment MAP(Y1|e) might be completely different from 

assignment to Y1 in MAP({Y1,Y2}|e) 
• Q1: Most likely disease P(A)? 
• A1: Flu 
• Q2: Most likely disease and symptom P(A,B)? 
• A2: Mono and Fever 

• Thus we cannot use a MAP query to give a correct answer to a 
marginal map query 



Marginal MAP more Complex than MAP 

• Contains both summations (like in probability queries) and 
maximizations (like in MAP queries) 



Linear Algebra For Machine Learning



Scalar 

• Single number
• Represented in lower-case italic x 
• E.g., let   be the slope of the line 

• Defining a real-valued scalar 
• E.g., let be the number of units 

• Defining a natural number scalar 



Vector 

• An array of numbers 
• Arranged in order 
• Each no. identified by an index 
• Vectors are shown in lower-case bold 
• If each element is in R then x is in Rn

• We think of vectors as points in space 
• Each element gives coordinate along an axis 



Matrix 

• 2-D array of numbers 
• Each element identified by two indices 
• Denoted by bold typeface A 
• Elements indicated as Am,n
• E.g., 

• A[i:] is ith row of A, A[:j] is jth column of A 
• If A has shape of height m and width n with real-values then



Tensor 

• Sometimes need an array with more than two axes 
• An array arranged on a regular grid with variable number of axes is 

referred to as a tensor 
• Denote a tensor with bold typeface: A 
• Element (i,j,k) of tensor denoted by Ai,j,k



Transpose of a Matrix 

• Mirror image across principal diagonal 

• Vectors are matrices with a single column 
• Often written in-line using transpose 

• Since a scalar is a matrix with one element 



Linear Transformation

• where                               and

n equations in n 
unknowns 



Linear Transformation

• where                           and 
• More explicitly 

• Sometimes we wish to solve for the unknowns x ={x1,..,xn} when A 
and b provide constraints 

Can view A as a linear 
transformation of vector x 
to vector b 



Identity and Inverse Matrices 

• Matrix inversion is a powerful tool to analytically solve Ax=b 
• Needs concept of Identity matrix 
• Identity matrix does not change value of vector 
• when we multiply the vector by identity matrix 
• Denote identity matrix that preserves n-dimensional vectors as In 

• Formally In ∈ Rn×n and ∀x ∈Rn , In x = x 
• Example of I3



Matrix Inverse 

• Inverse of square matrix A defined as A−1A=In

• We can now solve Ax=b as follows: 
Ax=b
A−1Ax = A−1b 
In x = A−1b
x = A−1b 

• This depends on being able to find A-1 

• If A-1 exists there are several methods for finding it 



Solving Simultaneous equations 

• Ax = b
• Two closed-form solutions 
• Matrix inversion x=A-1b 
• Gaussian elimination 



Norms 

• Used for measuring the size of a vector 
• Norms map vectors to non-negative values 
• Norm of vector x is distance from origin to x 
• It is any function f that satisfies: 



LP Norm 

• Definition 



LP Norm 

• Definition 
• L2 Norm
• Called Euclidean norm, written simply as
• Squared Euclidean norm is same as 



LP Norm 

• Definition 
• L1 Norm
• also called Manhattan distance 



LP Norm 

• Definition 
• Norm
• also called max norm



Norms of two-dimensional Point
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Size of a Matrix 

• Frobenius norm 

• It is analogous to L2 norm of a vector 



Image distance

- =

- =

L1 distance between X and Y:  

L2 distance between X and Y:  

distance between X and Y:  


