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After two weeks,

 Remainders
* Should work harder to enjoy the learning procedure

* slides
* Read slides before coming, think them through after class

 Slides will be adapted according to the prior classes, and will be updated to the
newest asap after class

e Lab

* First assignment to be disclosed this week

e Learning experience: type in the code, and try to adapt the code to see the different
results



scikit-learn
algorithm cheat-sheet

classification

regression

few features
should be
important
NO

dimensionality
reduction

Note: only a subset of ML methods
Figure from scikit-learn.org



Decision Tree up to now,

* Decision tree representation
* A general top-down algorithm
* How to do splitting on numeric features



Top-down decision tree learning

MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)

The focus of this
lecture

if stopping criteria met

make a IGM

determine class label/probabilities for N

In the next lecture

else

make an internal node N
Explained in the

S =FindBestSplit(tD, C) ———  |astlecture
for each outcome k of §

D, = subset of instances that have outcome %

k™ child of N = MakeSubtree(D,)

return subtree rooted at N



Topics

e Occam’s razor
* entropy and information gain
* types of decision-tree splits



Finding the best split

* How should we select the best feature to split on at each step?

* Key hypothesis: the simplest tree that classifies the training instances
accurately will work well on previously unseen instances



Occam’s razor

e attributed to 14th century William of Ockham
* “Nunquam ponenda est pluralitis sin necesitate”

4

* “Entities should not be multiplied beyond necessity”

* “when you have two competing theories that make exactly the same
predictions, the simpler one is the better”



But a thousand years earlier, |
said, “We consider it a good
principle to explain the
phenomena by the simplest
hypothesis possible.”




Occam’s razor and decision trees

* Why is Occam’s razor a reasonable heuristic for decision tree
learning?
* there are fewer short models (i.e. small trees) than long ones
* a short model is unlikely to fit the training data well by chance
* a long model is more likely to fit the training data well coincidentally



Finding the best splits

e Can we find and return the smallest possible decision tree that
accurately classifies the training set?

This is an NP-hard problem
[Hyafil & Rivest, Information Processing Letters, 1976]

* Instead, we’ll use an information-theoretic heuristics to greedily
choose splits



Expected Value (Finite Case)

* Let X be a random variable with a finite number of finite outcomes x,,
X,, ..., X, occurring with probability p,, p,, ..., p,, respectively. The
expectation of X is defined as

E[X] = pXy + PoXy + oo + PLX

* Expectation is a weighted average



Expected Value Example

* Let X represent the outcome of a roll of a fair six-sided die
e Possible values for X include {1,2,3,4,5,6}

* Probability of them are {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

. 1 1 1 1 1 1 H
* The expected valueis E[X|=1-=-+2-—+4+3-=+4.-—45.-=+6-—= =235

6 6 6 5 B 6



Information theory background

e consider a problem in which you are using a code to communicate
information to a receiver

e example: as bikes go past, you are communicating the manufacturer
of each bike

[




Information theory background

e suppose there are only four types of bikes
e we could use the following code

type code

Trek 11

Specialized 10

Cervelo 01 1><2—|—1><2—|—1><2—|—1><2—2
4 4 4 4 B

Serrota 00

* expected number of bits we have to communicate:
* 2 bits/bike



Information theory background

e we can do better if the bike types aren’t equiprobable

Type/probability # bits code
P(Trek)=0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo)=0.125 3 001
P(Serrota) =0.125 3 000



Information theory background

Type/probability # bits code
P(Trek)=0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo)=0.125 3 001
P(Serrota) =0.125 3 000

* expected number of bits we have to communicate

0.5 x1+025x2+0.120 x3+0.125 x3=1.7T5 < 2



Information theory background

Type/probability # bits code
P(Trek)=0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo)=0.125 3 001
P(Serrota) =0.125 3 000

0.0xXx14025%x2+0.125 x3+0.125 x3=1.75 < 2
= 0.5 X log, 0.5 4+ 0.25 X log, 0.25 4 0.125 X log, 0.125 4 0.125 X log, 0.125

= — Y P(y)log, P(y)

yevalues(Y)



Information theory background

— Y P(y)log, P(y)

yevalues(Y)

* optimal code uses -log,P(y) bits for event with probability P(y)



Entropy

* entropy is a measure of uncertainty associated with a random
variable

* defined as the expected number of bits required to communicate the

value of the variable entropy function for

binary variable
A
1.0

H(Y)=~ ) P(y)log, P(y)
yevalues(Y) HX) o5 +

0

Y

() (.5 ].0)

P(Y =1)



Conditional entropy

 conditional entropy (or equivocation) quantifies the amount of
information needed to describe the outcome of a random variable
given that the value of another random variable is known.

 What's the entropy of Y if we condition on some other variable X?

(Y| X) xevamzes()(g JH(Y | )\ similar as the
expected

¢ Where HY|X =z) = — Z PY =y|X =z)logy, P(Y = y| X = x) value?

yEvalues(Y')
\ Similar as

entropy



Information gain (a.k.a. mutual information)

* choosing splits in ID3: select the split S that most reduces the
conditional entropy of Y for training set D

InfoGain(D,S)=H,(Y)- H,(Y |S)

~/

D indicates that we're calculating
probabilities using the specific sample D




Relations between the concepts

H(X)

H(X,Y)



Information gain example

PlayTennis: training examples

Day Outlook  Temperature = Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No




Information gain example

* What'’s the information gain of splitting on Humidity?

D: [9+, 5-] InfoGain(D, Humidity) = H, (Y)- H (¥ | Humidity)

Humidity

hmm‘a' InfoGain(D,S)=H,(Y)- H(Y|S)

D: [3+,4-] D: [6+, 1-]




Information gain example

D: [9+, 5-]

9 9 5 5
Humidity H,(Y)= -EIDEE[EJ-EIOEE(H)-U.%U
hmmml
D: [3+,4-] D: [6+, 1-]

H(Y)=- Y P(y)log,P(y)

yevalues(Y)



Information gain example

D: [9+, 5-]

Humidity H (Y | Humidity) = P(Humidity=high)H(Y | Humidity=high) +
hmrmal P(Humidity=normal)H(Y |Humidity=normal)
D: [3+, 4-] D: [6+, 1-] HY | X)= ZggX:x)H(Y|X:x)
H, (Y | hi ——glu EJ—ilu (i)
p(Y | high) = 7 2 7 7 g 7
=0.985

o)

=0.592
HY|X=z)=- )  PY=y|X=2z)log, P(Y =y|X ==z
yEvalues(Y)



Information gain example

D: [9+, 5-]
Humidity InfoGain(D, Humidity) = H ,(Y) — H (Y | Humidity)

hmﬂnal =0.940 - [% (0.985) + %(0.592)]

D: [3+, 4-] D: [6+, 1-] =0.151




Information gain example

* |s it better to split on Humidity or Wind?

D: [9+, 5-] D: [9+,5-]
Humidity Wind
hmmal wemﬂng
D: [3+, 4-] D: [6+, 1-] D: [6+, 2-] D: [3+, 3-]

H, (Y |weak)=0.811 H (Y |strong)=1.0

v InfoGain(D, Humidity) = 0.940 — [%{0.935) + %(0.592)]
=0.151
. . 8 6
InfoGain(D, Wind) = 0.940~( -~ (0.811)+ - (1.0)

=0.048



One limitation of information gain

* information gain is biased towards tests with many outcomes

e e.g. consider a feature that uniquely identifies each training instance

* splitting on this feature would result in many branches, each of which is
“pure” (has instances of only one class)

* maximal information gain!



Gain ratio

* to address this limitation, C4.5 uses a splitting criterion called gain
ratio

 gain ratio normalizes the information gain by the entropy of the split
being considered

InfoGain(D, .S) _ H,(Y)- H,(Y|S)
H,(S) H,(S)

GainRatio(D, S) =



