
Decision Tree Learning
Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/ 



After two weeks,

• Remainders
• Should work harder to enjoy the learning procedure

• slides
• Read slides before coming, think them through after class
• Slides will be adapted according to the prior classes, and will be updated to the 

newest asap after class

• Lab
• First assignment to be disclosed this week
• Learning experience: type in the code, and try to adapt the code to see the different 

results 





Decision Tree up to now, 

• Decision tree representation

• A general top-down algorithm

• How to do splitting on numeric features



Top-down decision tree learning 

Explained in the 
last lecture

The focus of this 
lecture

In the next lecture



Topics 

• Occam’s razor 

• entropy and information gain 

• types of decision-tree splits 



Finding the best split 

• How should we select the best feature to split on at each step? 

• Key hypothesis: the simplest tree that classifies the training instances 
accurately will work well on previously unseen instances 



Occam’s razor 

• attributed to 14th century William of Ockham 

• “Nunquam ponenda est pluralitis sin necesitate” 

• “Entities should not be multiplied beyond necessity” 

• “when you have two competing theories that make exactly the same 
predictions, the simpler one is the better” 



But a thousand years earlier, I 
said, “We consider it a good 
principle to explain the 
phenomena by the simplest 
hypothesis possible.” 



Occam’s razor and decision trees 

• Why is Occam’s razor a reasonable heuristic for decision tree 
learning? 
• there are fewer short models (i.e. small trees) than long ones 

• a short model is unlikely to fit the training data well by chance 

• a long model is more likely to fit the training data well coincidentally 



Finding the best splits 

• Can we find and return the smallest possible decision tree that 
accurately classifies the training set? 

This is an NP-hard problem 

[Hyafil & Rivest, Information Processing Letters, 1976] 

• Instead, we’ll use an information-theoretic heuristics to greedily 
choose splits 



Expected Value (Finite Case)

• Let X be a random variable with a finite number of finite outcomes x1, 
x2, …, xk occurring with probability p1, p2, …, pk, respectively. The 
expectation of X is defined as 

E[X] = p1x1 + p2x2 + … + pkxk

• Expectation is a weighted average  



Expected Value Example

• Let X represent the outcome of a roll of a fair six-sided die

• Possible values for X include {1,2,3,4,5,6}

• Probability of them are {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

• The expected value is 



Information theory background 

• consider a problem in which you are using a code to communicate 
information to a receiver 

• example: as bikes go past, you are communicating the manufacturer 
of each bike 



Information theory background 

• suppose there are only four types of bikes 

• we could use the following code 

• expected number of bits we have to communicate: 
• 2 bits/bike 



Information theory background 

• we can do better if the bike types aren’t equiprobable 



Information theory background 

• expected number of bits we have to communicate



Information theory background 

=



Information theory background 

• optimal code uses -log2P(y) bits for event with probability P(y) 



Entropy 

• entropy is a measure of uncertainty associated with a random 
variable 

• defined as the expected number of bits required to communicate the 
value of the variable 



Conditional entropy 

• conditional entropy (or equivocation) quantifies the amount of 
information needed to describe the outcome of a random variable 
given that the value of another random variable is known.

• What’s the entropy of Y if we condition on some other variable X? 

• Where 

similar as the 
expected 
value?

Similar as 
entropy



Information gain (a.k.a. mutual information) 

• choosing splits in ID3: select the split S that most reduces the 
conditional entropy of Y for training set D 



Relations between the concepts 



Information gain example 



Information gain example 

• What’s the information gain of splitting on Humidity? 



Information gain example 



Information gain example 

= P(Humidity=high)HD(Y|Humidity=high) + 
P(Humidity=normal)HD(Y|Humidity=normal)



Information gain example 



Information gain example 

• Is it better to split on Humidity or Wind? 



One limitation of information gain 

• information gain is biased towards tests with many outcomes 

• e.g. consider a feature that uniquely identifies each training instance 
• splitting on this feature would result in many branches, each of which is 

“pure” (has instances of only one class) 

• maximal information gain! 



Gain ratio 

• to address this limitation, C4.5 uses a splitting criterion called gain 
ratio 

• gain ratio normalizes the information gain by the entropy of the split 
being considered 


