Decision Tree Learning

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Decision Tree up to now,

* Decision tree representation
* A general top-down algorithm
* How to do splitting on numeric features

* Occam’s razor
* entropy and information gain
* types of decision-tree splits

Topics

* Accuracy of decision trees
e Overfitting
 Stopping criteria of decision trees

 Variants of decision trees
* Regression trees
e probability estimation trees
* m-of-n splits
* lookahead

Accuracy of Decision Tree

Definition of Accuracy and Error

* Given a set D of samples and a trained model M, the accuracy is the
percentage of correctly labeled samples. That is,

Accuracy(D, M) = {M(z) :|g|| xz € D}

Where |, is the true label of sample x and M(x) gives the predicted label of x by
M.

* Error is a dual concept of accuracy. But, what is D?

Error(D,M) =1 — Accuracy(D, M)

How can we assess the accuracy of a tree?

e Can we just calculate the fraction of training instances that are
correctly classified?

* Consider a problem domain in which instances are assigned labels at
random with P(Y =t) = 0.5

* how accurate would a learned decision tree be on previously unseen
instances?

* how accurate would it be on its training set?

How can we assess the accuracy of a tree?

* to get an unbiased estimate of a learned model’s accuracy, we must
use a set of instances that are held-aside during learning

e this is called a test set

all instances

test

train

Overfitting

Overfitting

* consider error of model M over
* training data: Error(Diraining, M)
* entire distribution of data: Error(Dyyye, M)

* model M € H overfits the training data if there is an alternative
model M’ € H such that

Perform better on
Error(Dtraining, M) < Error(Diraining, M ’)/ training dataset

Error(Dirye, M) > Error(Dirye, Mf)\ Perform worse on
ground truth data

Example 1: overfitting with noisy data

* suppose
e the target conceptis ¥ = X1 A X5
* there is noise in some feature values
* we're given the following training set

x | x, | x | x, | X Y
t t t t t t
t t f f t t
t P f t t f t
t [f f t f f
t f t f f f
f t t f t f

\ noisy value

Example 1: overfitting with noisy data

tree that fits noisy training data

correct tree X,
T F

X; p Y = Xl A Xg
/X
X, :
/\ t 2 A noisy data:
X, =t
t f X, = f

w

< X X X

T (02 I S

ot | I T
- ~+ e+

—
—h

Example 1: overfitting with noisy data

correct tree

Y =X AN X5
XI

/R

X, f
/\ X; X; X; Xy Y
¢ ¢ ¢ ¢ t t

t f

t t f f t t
, t £ { { f t
 What is the accuracy? : //’ - - , ; ;
* Accur‘acy([)training'l\/l) = 5/6 t f t f f f
* Accuracy(D;, M) = 100% £ { { f t f

\noisy value

Example 1: overfitting with noisy data

tree that fits noisy training data

Y = X1 ANXs
x, | x, | x, | x Y
t t t t t t
t t £ £ { {
, t £ t t £ {
 What is the accuracy? : //’ - - , ; ;
* Accur‘acy([)training'l\/l) =100% t f t f f f
* Accuracy(D;, .,M) < 100% £ { { f t f

\noisy value

Example 1: overfitting with noisy data

Training set
True accuracy
accuracy
ct tr
5/6 100%
Ml
fi train I\/Iz IS
overfitting!

M, 100% <100 %

Example 2: overfitting with noise-free data

* suppose
* the target conceptis Y = X7 A X5
* P(X; =1)=0.5 for both classes
* P(Y=1)=0.66
* we're given the following training set

X, X, X, X, X,) 4
t t f t i t
t t t f 1 t
t t f t f t
t f f t f f
f t f f t f

Example 2: overfitting with noise-free data

A Y — X1 A Xg
>N
t \D P(X, = t) = 0.5
P(Y=t) = 0.66
* What is the accuracy? X X, X; X, X
* Accuracy(DyiningsM) = 100%
* Accuracy(D;, ,M) = 50%

= | =+ | =+ | =+ | =+
= | | =+ | =+ | =
bty | b=y | =+ | = | =
- | =+ =+ = | =
= |y [y | =+ |~

e i R e e R

Example 2: overfitting with noise-free data

Y=XAKX
ALY
P(X;=t)=0.5
P(Y=t) = 0.66
* What is the accuracy? X X; X; X, | X, Y
* Accuracy(DyiningsM) = 60% t t t t t t
* Accuracy(D;, ,M) = 66% t t t f t t
t t t t f t
t f f t f f
f t f f t f

Example 2: overfitting with noise-free data

Training set
True accuracy
accuracy
X,
M / F 100% 50%
{ ‘ M, is
overfitting!
M, 60% 66%

* because the training set is a limited sample, there might be
(combinations of) features that are correlated with the target concept
by chance

Example 2: overfitting with noise-free data

training set test set
dCCuracy dCcuracy
Xj‘
T F
100% 50%
66% 66%

* because the training set is a limited sample, there might be
(combinations of) features that are correlated with the target concept
by chance

Overfitting

Accuracy

0.9

0.85

0.8

0.75

o
<

0.65

0.6

0.55

0.5

decision trees

N

—————— ——— — —— —— -

On training data ——
On test data ----

10

20

30 40 50 60 70 80 90

Size of tree (number of nodes)

100

Example 3: regression using polynomial

OF

0 , l

Example 3: regression using polynomial

()

- - M () -
/\

O

7 o © Dq

7/

0 : I

Regression using
polynomial of
degree M

Example 3: regression using polynomial

OF

0 . I

Example 3: regression using polynomial

Or

0 : I

Example 3: regression using polynomial

OFr

0 : I

Example 3: regression using polynomial

1

—©6— Training
—O0— Test

057

Erms

General phenomenon

Error

Underfitting zone| Overfitting zone

Training error

(Generalization error

——
e .

Optimal Capacity
Capacity

Prevent overfitting

e cause: training error and expected error are different
* there may be noise in the training data

* training data is of limited size, resulting in difference from the true
distribution

* larger the hypothesis class, easier to find a hypothesis that fits the difference
between the training data and the true distribution

* prevent overfitting:
* cleaner training data help!
* more training data help!

* throwing away unnecessary hypotheses helps! (Occam’s Razor)

Avoiding overfitting in DT learning

* two general strategies to avoid overfitting
» 1. early stopping: stop if further splitting not justified by a statistical test
* Quinlan’s original approach in ID3

» 2. post-pruning: grow a large tree, then prune back some nodes
* more robust to myopia of greedy tree learning

Stopping criteria

Stopping criteria

* We should form a leaf when
* all of the given subset of instances are of the same class
* we've exhausted all of the candidate splits

* Is there a reason to stop earlier, or to prune back the tree?

Pruning in C4.5

* split given data into training and validation (tuning) sets
* Grow a complete tree

* do until further pruning is harmful
e evaluate impact on tuning-set accuracy of pruning each node
* greedily remove the one that most improves tuning-set accuracy

Validation sets

* a validation set (a.k.a. tuning set) is a subset of the training set that is
held aside

* not used for primary training process (e.g. tree growing)
* but used to select among models (e.g. trees pruned to varying degrees)

all instances

train test

tuning

Variant: Regression Trees

Regression trees

* in a regression tree, leaves have functions that predict numeric values
instead of class labels

* the form of these functions depends on the method
* CART uses constants
* some methods use linear functions

X;> 10 X, > 10
ul r=3.2 X Y=3.2
Y=5 X;> 2.1 Y=2X,+5 X,>21

r=3.J Y=24 Y=I Y=3X,+X,

Regression trees in CART

* CART does least squares regression which tries to minimize

D

2" =5)
i=1
target value for i \/ _/ value predicted by tree for i training
training instance instance (average value of y for
training instances reaching the leaf)
= > X00-50)

Leleaves iel

 at each internal node, CART chooses the split that most reduces this
guantity

Variant: Probability estimation trees

Probability estimation trees

* in a PE tree, leaves estimate the probability of each class

e could simply use training instances at a leaf to estimate probabilities,
but ...

e smoothing is used to make estimates less extreme (we’ll revisit this
topic when we cover Bayes nets)

X;>10
/\ D: [3+,0-]
X; P(Y=pos) = 0.8
P(Y=neg) = 0.2
D: [3+, 3-] /\D: [0+, 8-]
P(Y=pos) = 0.5 P(Y=pos) = 0.1

P(Y=neg) = 0.5 P(Y=neg) = 0.9

Variant: m-of-n splits

m-of-n splits

* a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91]

5 of {ROI[13] > 1.07,
vs_Yen_future < 039,
interest_rate[1] = false,
vs_Dem_future[2] > 0.17,
vs_Dem_future[3] < 0.17,
vs_SFr_future < 0.39,
Dem_USD_ex[8] < -1.02,
Dem_future[5] > -1.38,
Dem_USD_ex|[3] < -0.10,
vs_SFr_future < 0.16}

e each split is constructed using a
heuristic search process

e this can result in smaller, easier to
comprehend trees

test is satisfied if 5 of 10 /T

conditions are true

tree for exchange rate prediction
[Craven & Shavlik, 1997]

\F

vs_Dem_future[2] < -0.32

vs_SFr_future < 0.06

0\
3

vs_SFr_future < -0.21

A &

/

Dem_future[5] < 0.37

&

down

Searching for m-of-n splits

* m-of-n splits are found via a hill-climbing search
* initial state: best 1-of-1 (ordinary) binary split
 evaluation function: information gain

¢ operators:
* m-of-n => m-of-(n+1)
1 of { X1=t, X3=f} => 1 of { X1=t, X3=f, X7=t }
m-of-n =>(m+1)-of-(n+1)
1 of { X1=t, X3=f } => 2 of { X1=t, X3=f, X7=t }

Variant: Lookahead

Lookahead

* most DT learning methods use a hill-climbing search

* a limitation of this approach is myopia: an important feature may not
appear to be informative until used in conjunction with other features

* can potentially alleviate this limitation by using a lookahead search
[Norton ‘89; Murphy & Salzberg ‘95]

* empirically, often doesn’t improve accuracy or tree size

Choosing best split in ordinary DT learning

* OrdinaryFindBestSplit (set of training instances D, set of candidate
splits C)
maxgain = -0
foreach split Sin C
gain = InfoGain(D, S)
If gain > maxgain
maxgain = gain
SE?ES.E‘ =3

return §, .,

Choosing best split with lookahead (part 1)

* LookaheadFindBestSplit (set of training instances D, set of candidate
splits C)
maxgain = -oo

foreach split Sin C
gain = EvaluateSplit(D, C, S)
If gain > maxgain
maxgain = gain
Spest =9

return §,,

Choosing best split with lookahead (part 2)

EvaluateSplit(D, C, S)
if a split on S separates instances by class (i.e. H, (Y |S5)=0)
// no need to split further
return H,(Y)- H, (Y |S)
else
for each outcome & of §
// see what the splits at the next level would be
D, = subset of instances that have outcome &
S, = OrdinaryFindBestSplit(D,, C - S)
// return information gain that would result from this 2-level subtree

UM (1)- (; %{"Hﬂk (Y|S= k,Sk]

Calculating information gain with lookahead

* Suppose that when considering Humidity as a split, we find that Wind
and Temperature are the best features to split on at the next level
D: [12-, 11+4]
Humidity

D: [6-, 8+] | Wind Temperature | D: [6-, 3+]

strur/ \weak h|g/\

D: [2-, 3+] D: [4-, 5+] D: [2-,2+]

* We can assess value of choosing Humidity as our split by

H,(Y)- [; H (Y| Humidity =high,Wind) + %H , (Y| Humidity = Inw,Temperature)]

Calculating information gain with lookahead

e Using the tree from the previous slide:

%HD(Y | Humidity = high, Wind) + % H (Y | Humidity =low, Temperature)
- 2—2 ,(¥ | Humidity = high,Wind = strong) +
- H,(¥ | Humidity =high, Wind = weak) +
;—31{ »(¥' | Humidity = low, Temperature = high) +

25—31{ (Y| Humidity = low, Temperature = low)

H (Y | Humidity = high, Wind = strong) = —%log(g] —glog(ﬁ]

5 5

Comments on decision tree learning

e widely used approach

* many variations

 provides humanly comprehensible models when trees not too big
* insensitive to monotone transformations of numeric features

e standard methods learn axis-parallel hypotheses*

e standard methods not suited to on-line setting™®

 usually not among most accurate learning methods

* although variants exist that are exceptions to this

