Decision Tree Learning

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Decision Tree up to now,

- Decision tree representation
- A general top-down algorithm
- How to do splitting on numeric features
- Occam's razor
- entropy and information gain
- types of decision-tree splits

Topics

- Accuracy of decision trees
- Overfitting
- Stopping criteria of decision trees
- Variants of decision trees
 - Regression trees
 - probability estimation trees
 - m-of-n splits
 - lookahead

Accuracy of Decision Tree

Definition of Accuracy and Error

• Given a set D of samples and a trained model M, the accuracy is the percentage of correctly labeled samples. That is,

$$Accuracy(D, M) = \frac{|\{M(x) = l_x \mid x \in D\}|}{|D|}$$

Where I_x is the true label of sample x and M(x) gives the predicted label of x by M.

Error is a dual concept of accuracy.

But, what is D?

$$Error(D, M) = 1 - Accuracy(D, M)$$

How can we assess the accuracy of a tree?

- Can we just calculate the fraction of training instances that are correctly classified?
- Consider a problem domain in which instances are assigned labels at random with P(Y = t) = 0.5
 - how accurate would a learned decision tree be on previously unseen instances?
 - how accurate would it be on its training set?

How can we assess the accuracy of a tree?

- to get an unbiased estimate of a learned model's accuracy, we must use a set of instances that are held-aside during learning
- this is called a *test set*

Overfitting

Overfitting

- consider error of model M over
 - training data: $Error(D_{training}, M)$
 - entire distribution of data: $Error(D_{true}, M)$
- model $M \in H$ overfits the training data if there is an alternative model $M' \in H$ such that

 $Error(D_{training}, M) < Error(D_{training}, M')$

Perform better on training dataset

 $Error(D_{true}, M) > Error(D_{true}, M')$

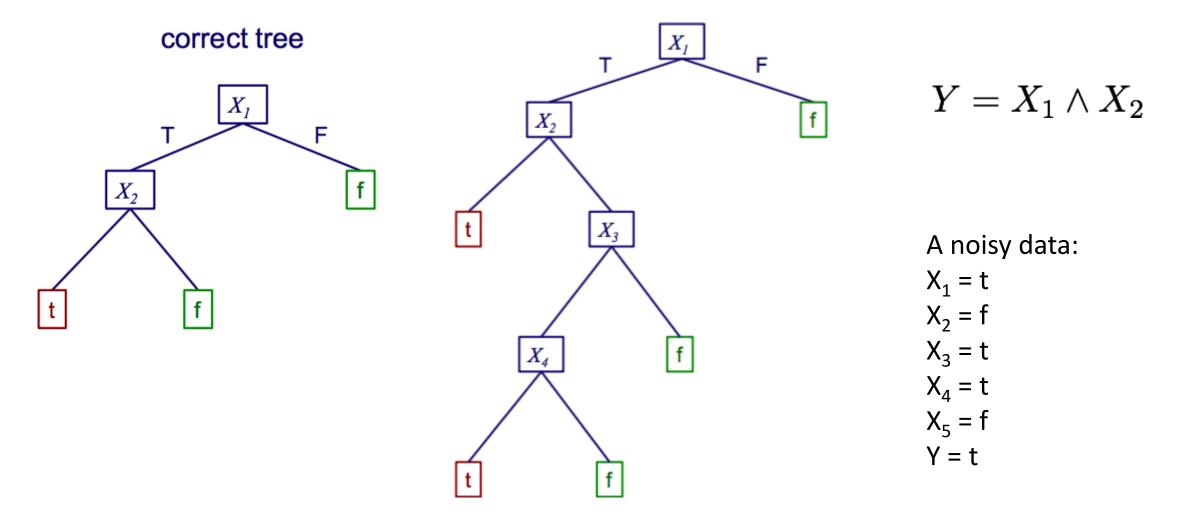
Perform worse on ground truth data

• suppose

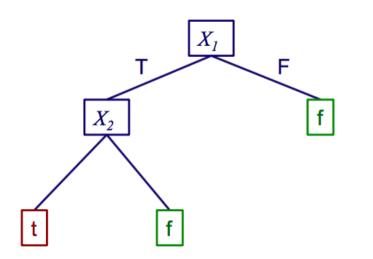
- the target concept is $\,Y=X_1\wedge X_2\,$
- there is noise in some feature values
- we're given the following training set

X ₁	<i>X</i> ₂	X3	<i>X</i> ₄	<i>X</i> ₅		Y	
t	t	t	t	t		t	
t	t	f	f	t		t	
t	f	t	t	f		t	
t	f	f	t	f		f	
t	f	t	f	f		f	
f	t	t	f	t		f	
noisy value							

tree that fits noisy training data



correct tree



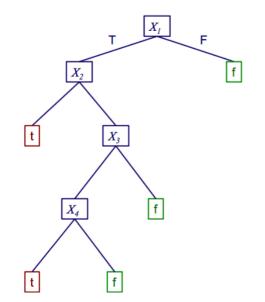
- What is the accuracy?
 - Accuracy(D_{training}, M) = 5/6
 - Accuracy(D_{true} , M) = 100%

$$\mathbf{r} = \mathbf{r}_1 / (\mathbf{r}_2)$$

 $Y = X_1 \wedge X_2$

X ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	•••	Y		
t	t	t	t	t		t		
t	t	f	f	t		t		
t	f	t	t	f		t		
t	f	f	t	f		f		
t	f	t	f	f		f		
f	t	t	f	t		f		
	noisy value							

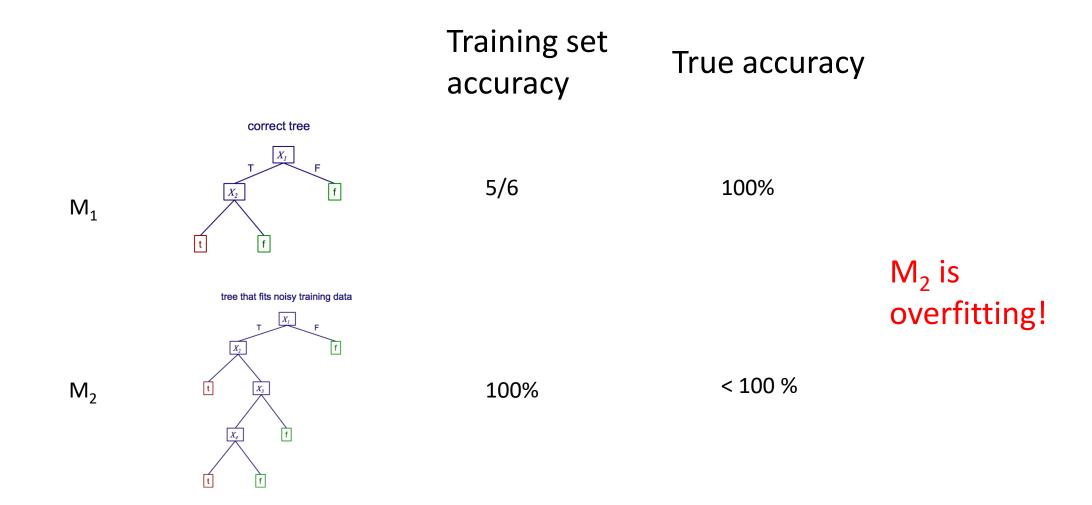
tree that fits noisy training data



 $Y = X_1 \wedge X_2$

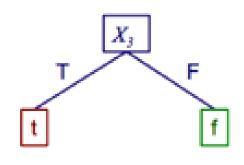
X ₁	X2	X ₃	X ₄	<i>X</i> ₅	•••	Y	
t	t	t	t	t		t	
t	t	f	f	t		t	
t	f	t	t	f		t	
t	f	f	t	f		f	
t	f	t	f	f		f	
f	t	t	f	t		f	
noisy value							

- What is the accuracy?
 - Accuracy(D_{training}, M) = 100%
 - Accuracy(D_{true} , M) < 100%



- suppose
 - the target concept is $\ \ Y = X_1 \wedge X_2$
 - $P(X_3 = t) = 0.5$ for both classes
 - P(Y = t) = 0.66
 - we're given the following training set

X ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f



$$Y = X_1 \wedge X_2$$

P(X₃ = t) = 0.5
P(Y=t) = 0.66

- What is the accuracy?
 - Accuracy(D_{training}, M) = 100%
 - Accuracy(D_{true},M) = 50%

X ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	X 5	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

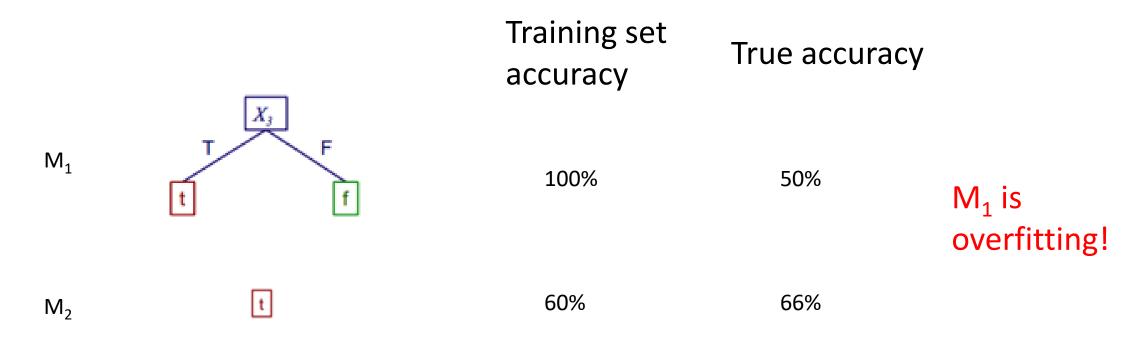
t

$$Y = X_1 \wedge X_2$$

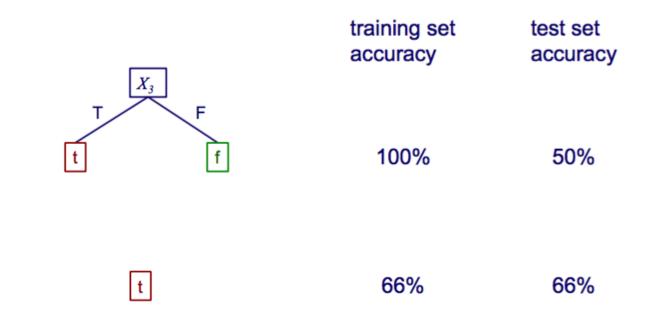
P(X₃ = t) = 0.5
P(Y=t) = 0.66

- What is the accuracy?
 - Accuracy(D_{training}, M) = 60%
 - Accuracy(D_{true},M) = 66%

X ₁	<i>X</i> ₂	X ₃	X4	<i>X</i> ₅	 Y
t	t	t	t	t	 t
t	t	t	f	t	 t
t	t	t	t	f	 t
t	f	f	t	f	 f
f	t	f	f	t	 f

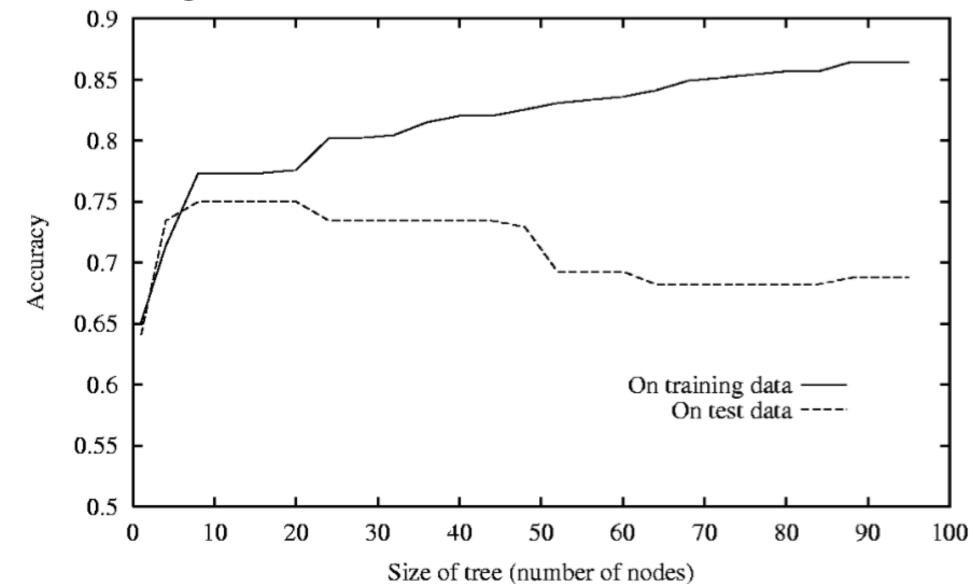


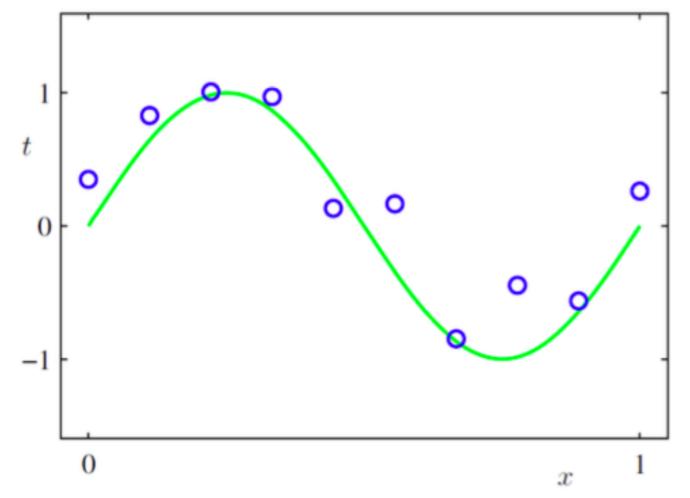
 because the training set is a limited sample, there might be (combinations of) features that are correlated with the target concept by chance



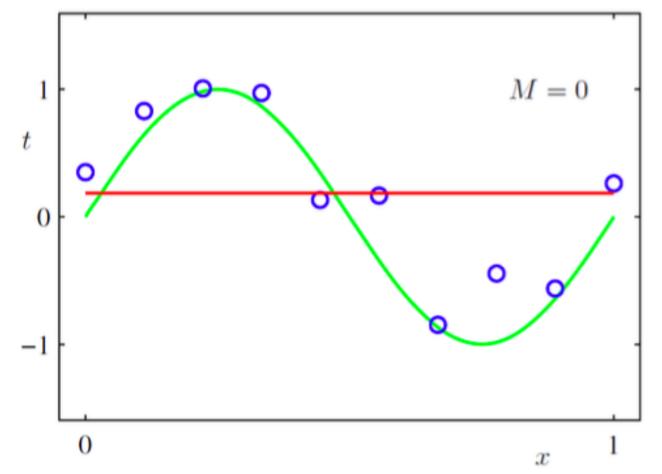
 because the training set is a limited sample, there might be (combinations of) features that are correlated with the target concept by chance

Overfitting in decision trees

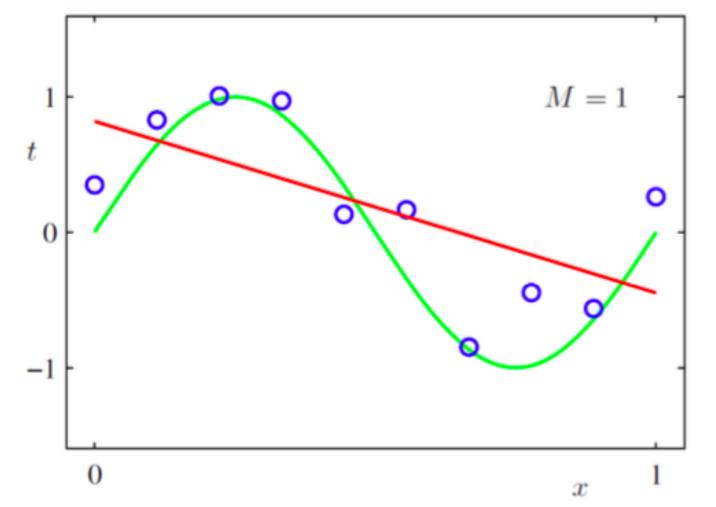


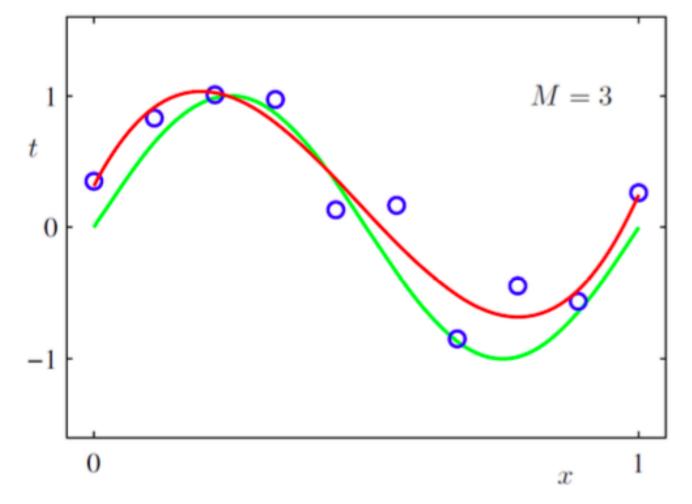


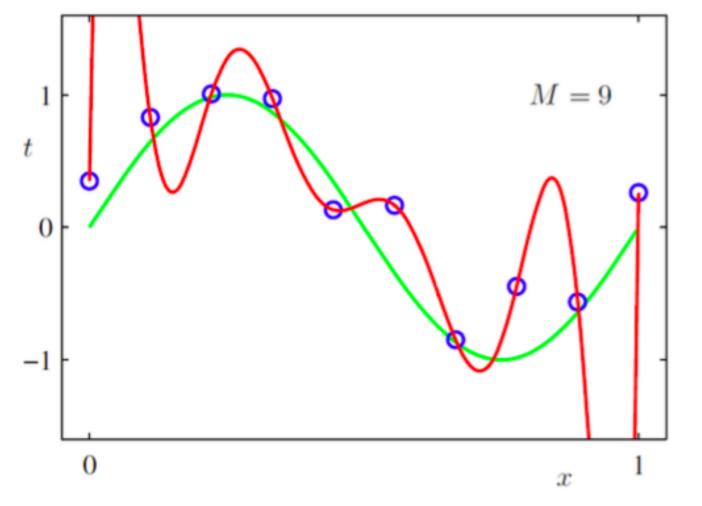
 $t = \sin(2\pi x) + \epsilon$

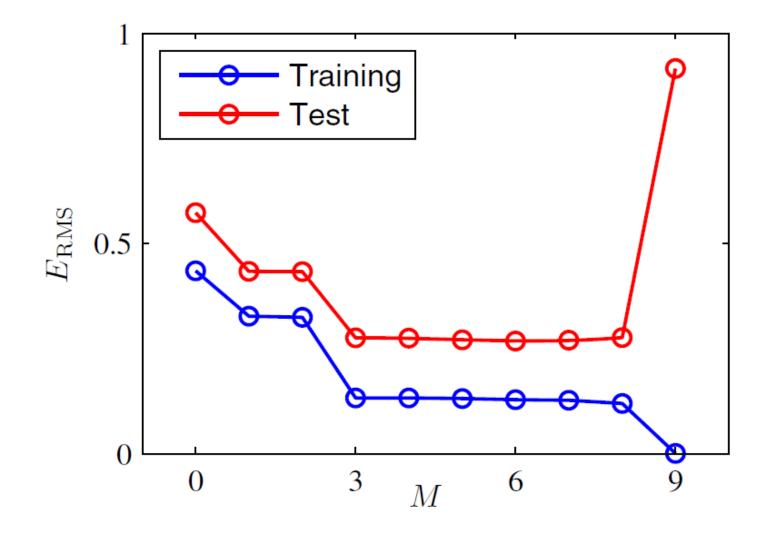


Regression using polynomial of degree M

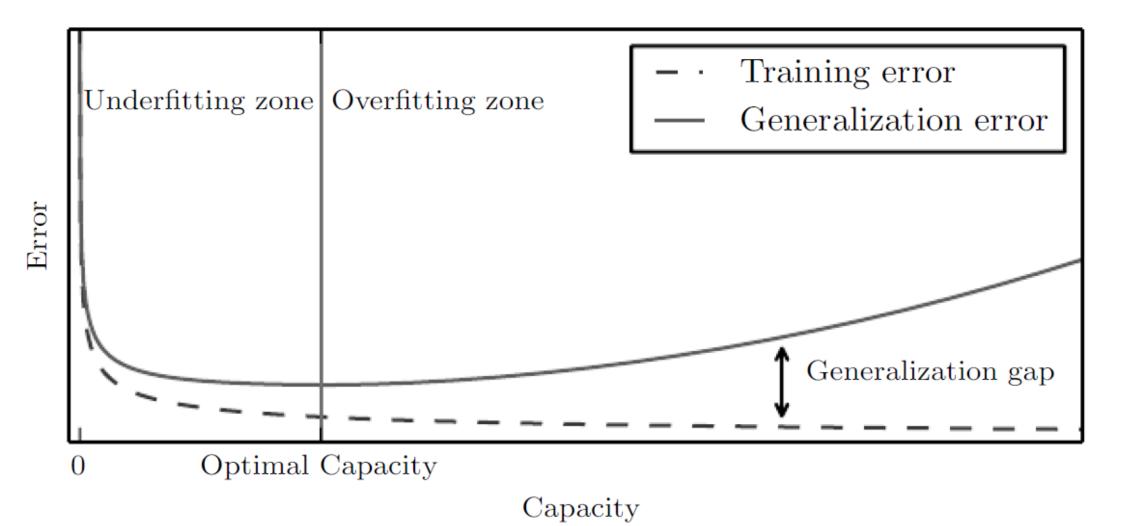








General phenomenon



Prevent overfitting

- cause: training error and expected error are different
 - there may be noise in the training data
 - training data is of limited size, resulting in difference from the true distribution
 - larger the hypothesis class, easier to find a hypothesis that fits the difference between the training data and the true distribution
- prevent overfitting:
 - cleaner training data help!
 - more training data help!
 - throwing away unnecessary hypotheses helps! (Occam's Razor)

Avoiding overfitting in DT learning

- two general strategies to avoid overfitting
 - 1. early stopping: stop if further splitting not justified by a statistical test
 - Quinlan's original approach in ID3
 - 2. post-pruning: grow a large tree, then prune back some nodes
 - more robust to myopia of greedy tree learning

Stopping criteria

Stopping criteria

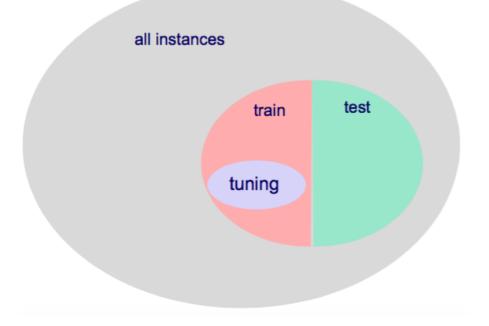
- We should form a leaf when
 - all of the given subset of instances are of the same class
 - we've exhausted all of the candidate splits
- Is there a reason to stop earlier, or to prune back the tree?

Pruning in C4.5

- split given data into training and *validation* (*tuning*) sets
- Grow a complete tree
- do until further pruning is harmful
 - evaluate impact on tuning-set accuracy of pruning each node
 - greedily remove the one that most improves tuning-set accuracy

Validation sets

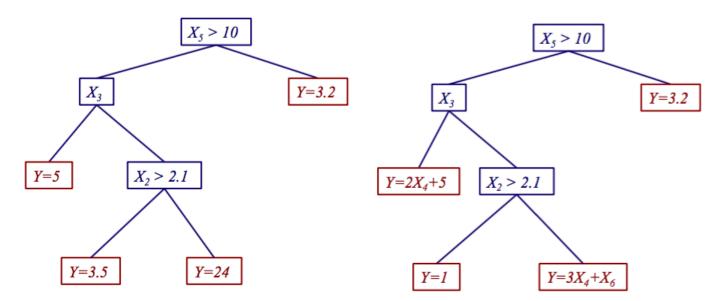
- a *validation set* (a.k.a. *tuning set*) is a subset of the training set that is held aside
 - not used for primary training process (e.g. tree growing)
 - but used to select among models (e.g. trees pruned to varying degrees)



Variant: Regression Trees

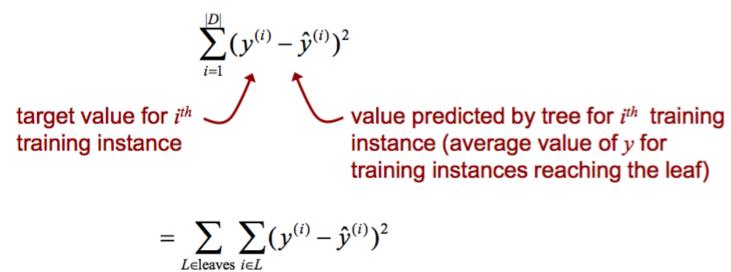
Regression trees

- in a regression tree, leaves have functions that predict numeric values instead of class labels
- the form of these functions depends on the method
 - CART uses constants
 - some methods use linear functions



Regression trees in CART

• CART does *least squares regression* which tries to minimize

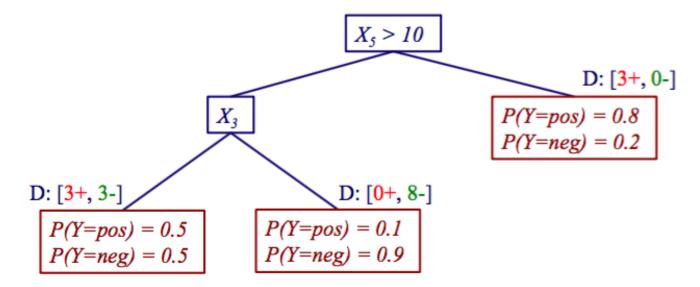


 at each internal node, CART chooses the split that most reduces this quantity

Variant: Probability estimation trees

Probability estimation trees

- in a PE tree, leaves estimate the probability of each class
- could simply use training instances at a leaf to estimate probabilities, but ...
- *smoothing* is used to make estimates less extreme (we'll revisit this topic when we cover Bayes nets)

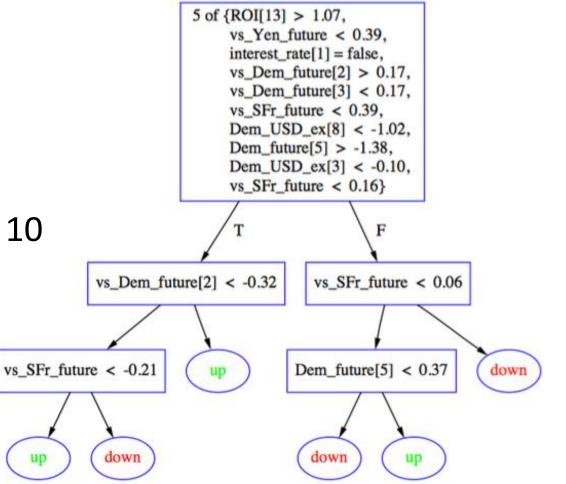


Variant: m-of-n splits

m-of-n splits

- a few DT algorithms have used m-of-n splits [Murphy & Pazzani '91]
- each split is constructed using a heuristic search process
- this can result in smaller, easier to comprehend trees

test is satisfied if 5 of 10 conditions are true



tree for exchange rate prediction [Craven & Shavlik, 1997]

Searching for m-of-n splits

- m-of-n splits are found via a hill-climbing search
- initial state: best 1-of-1 (ordinary) binary split
- evaluation function: information gain
- operators:
 - m-of-n => m-of-(n+1)
 - 1 of { X1=t, X3=f } => 1 of { X1=t, X3=f, X7=t }
 - m-of-n => (m+1)-of-(n+1)
 - 1 of { X1=t, X3=f } => 2 of { X1=t, X3=f, X7=t }

Variant: Lookahead

Lookahead

- most DT learning methods use a hill-climbing search
- a limitation of this approach is myopia: an important feature may not appear to be informative until used in conjunction with other features
- can potentially alleviate this limitation by using a *lookahead* search [Norton '89; Murphy & Salzberg '95]
- empirically, often doesn't improve accuracy or tree size

Choosing best split in ordinary DT learning

 OrdinaryFindBestSplit (set of training instances D, set of candidate splits C)

 $maxgain = -\infty$

for each split S in C gain = InfoGain(D, S)if gain > maxgain maxgain = gain $S_{best} = S$

return S_{best}

Choosing best split with lookahead (part 1)

 LookaheadFindBestSplit (set of training instances D, set of candidate splits C)

maxgain = $-\infty$

```
for each split S in C
```

gain = EvaluateSplit(D, C, S)

if gain > maxgain

maxgain = gain

$$S_{best} = S$$

return S_{best}

Choosing best split with lookahead (part 2)

EvaluateSplit(D, C, S)

if a split on *S* separates instances by class (i.e. $H_D(Y|S) = 0$) // no need to split further return $H_D(Y) - H_D(Y|S)$

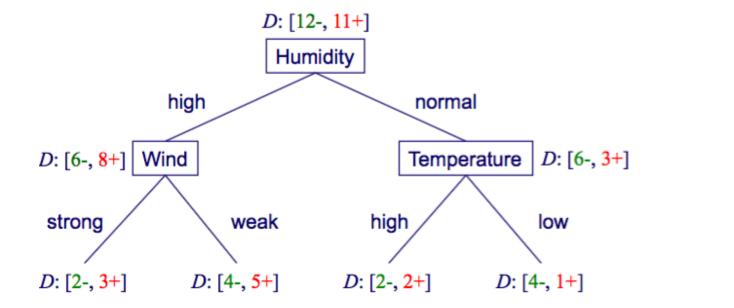
else

for each outcome k of S

// see what the splits at the next level would be D_k = subset of instances that have outcome k S_k = OrdinaryFindBestSplit(D_k , C-S) // return information gain that would result from this 2-level subtree return $H_D(Y) - \left(\sum_k \frac{|D_k|}{|D|} H_{D_k}(Y | S = k, S_k)\right)$

Calculating information gain with lookahead

• Suppose that when considering Humidity as a split, we find that Wind and Temperature are the best features to split on at the next level



• We can assess value of choosing Humidity as our split by $H_D(Y) - \left(\frac{14}{23}H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind}) + \frac{9}{23}H_D(Y \mid \text{Humidity} = \text{low}, \text{Temperature})\right)$

Calculating information gain with lookahead

• Using the tree from the previous slide:

$$\begin{aligned} \frac{14}{23}H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind}) + \frac{9}{23}H_D(Y \mid \text{Humidity} = \text{low}, \text{Temperature} \\ &= \frac{5}{23}H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind} = \text{strong}) + \\ &= \frac{9}{23}H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind} = \text{weak}) + \\ &= \frac{4}{23}H_D(Y \mid \text{Humidity} = \text{low}, \text{Temperature} = \text{high}) + \\ &= \frac{5}{23}H_D(Y \mid \text{Humidity} = \text{low}, \text{Temperature} = \text{low}) \end{aligned}$$

$$H_D(Y \mid \text{Humidity} = \text{high}, \text{Wind} = \text{strong}) = -\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right)$$

Comments on decision tree learning

- widely used approach
- many variations
- provides humanly comprehensible models when trees not too big
- insensitive to monotone transformations of numeric features
- standard methods learn axis-parallel hypotheses*
- standard methods not suited to on-line setting*
- usually not among most accurate learning methods
- * although variants exist that are exceptions to this