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Decision Tree up to now, 

• Decision tree representation

• A general top-down algorithm

• How to do splitting on numeric features

• Occam’s razor 

• entropy and information gain 

• types of decision-tree splits 



Topics

• Accuracy of decision trees

• Overfitting 

• Stopping criteria of decision trees

• Variants of decision trees
• Regression trees

• probability estimation trees 

• m-of-n splits

• lookahead



Accuracy of Decision Tree



Definition of Accuracy and Error

• Given a set D of samples and a trained model M, the accuracy is the 
percentage of correctly labeled samples. That is, 

Where lx is the true label of sample x and M(x) gives the predicted label of x by 
M. 

• Error is a dual concept of accuracy.  But, what is D?



How can we assess the accuracy of a tree? 

• Can we just calculate the fraction of training instances that are 
correctly classified? 

• Consider a problem domain in which instances are assigned labels at 
random with P(Y = t) = 0.5 
• how accurate would a learned decision tree be on previously unseen 

instances? 

• how accurate would it be on its training set? 



How can we assess the accuracy of a tree? 

• to get an unbiased estimate of a learned model’s accuracy, we must 
use a set of instances that are held-aside during learning 

• this is called a test set



Overfitting



Overfitting 

• consider error of model M over 
• training data: 

• entire distribution of data: 

• model               overfits the training data if there is an alternative 
model such that 

Perform better on 
training dataset

Perform worse on 
ground truth data



Example 1: overfitting with noisy data 

• suppose 
• the target concept is 

• there is noise in some feature values 

• we’re given the following training set 



Example 1: overfitting with noisy data 

A noisy data:
X1 = t
X2 = f
X3 = t
X4 = t
X5 = f
Y = t



Example 1: overfitting with noisy data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 5/6

• Accuracy(Dtrue,M) = 100%



Example 1: overfitting with noisy data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) < 100%



Example 1: overfitting with noisy data 
Training set 
accuracy

True accuracy

5/6 100%

100% < 100 %

M2 is 
overfitting!

M1

M2



Example 2: overfitting with noise-free data 

• suppose 
• the target concept is

• P(X3 = t) = 0.5 for both classes 

• P(Y = t) = 0.66 

• we’re given the following training set 



Example 2: overfitting with noise-free data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) = 50%

P(X3 = t) = 0.5
P(Y=t) = 0.66



Example 2: overfitting with noise-free data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 60%

• Accuracy(Dtrue,M) = 66%

P(X3 = t) = 0.5
P(Y=t) = 0.66



Example 2: overfitting with noise-free data 

• because the training set is a limited sample, there might be 
(combinations of) features that are correlated with the target concept 
by chance 

Training set 
accuracy

True accuracy

100% 50%

60% 66%

M1

M2

M1 is 
overfitting!



Example 2: overfitting with noise-free data 

• because the training set is a limited sample, there might be 
(combinations of) features that are correlated with the target concept 
by chance 



Overfitting in decision trees 



Example 3: regression using polynomial 



Example 3: regression using polynomial 

Regression using 
polynomial of 
degree M



Example 3: regression using polynomial 



Example 3: regression using polynomial 



Example 3: regression using polynomial 



Example 3: regression using polynomial 



General phenomenon 



Prevent overfitting 

• cause: training error and expected error are different 
• there may be noise in the training data 

• training data is of limited size, resulting in difference from the true 
distribution 

• larger the hypothesis class, easier to find a hypothesis that fits the difference 
between the training data and the true distribution 

• prevent overfitting: 
• cleaner training data help! 

• more training data help! 

• throwing away unnecessary hypotheses helps! (Occam’s Razor) 



Avoiding overfitting in DT learning 

• two general strategies to avoid overfitting 
• 1. early stopping: stop if further splitting not justified by a statistical test 

• Quinlan’s original approach in ID3 

• 2. post-pruning: grow a large tree, then prune back some nodes 
• more robust to myopia of greedy tree learning 



Stopping criteria 



Stopping criteria 

• We should form a leaf when 
• all of the given subset of instances are of the same class 

• we’ve exhausted all of the candidate splits 

• Is there a reason to stop earlier, or to prune back the tree? 



Pruning in C4.5 

• split given data into training and validation (tuning) sets 

• Grow a complete tree

• do until further pruning is harmful 
• evaluate impact on tuning-set accuracy of pruning each node 

• greedily remove the one that most improves tuning-set accuracy 



Validation sets 

• a validation set (a.k.a. tuning set) is a subset of the training set that is 
held aside 
• not used for primary training process (e.g. tree growing) 

• but used to select among models (e.g. trees pruned to varying degrees) 



Variant: Regression Trees



Regression trees 

• in a regression tree, leaves have functions that predict numeric values 
instead of class labels 

• the form of these functions depends on the method 
• CART uses constants 

• some methods use linear functions 



Regression trees in CART 

• CART does least squares regression which tries to minimize 

• at each internal node, CART chooses the split that most reduces this 
quantity 



Variant: Probability estimation trees 



Probability estimation trees 

• in a PE tree, leaves estimate the probability of each class 

• could simply use training instances at a leaf to estimate probabilities, 
but ... 

• smoothing is used to make estimates less extreme (we’ll revisit this 
topic when we cover Bayes nets) 



Variant: m-of-n splits 



m-of-n splits 

• a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91] 

• each split is constructed using a                                                                       
heuristic search process 

• this can result in smaller, easier to                                                  
comprehend trees 

test is satisfied if 5 of 10 
conditions are true 

tree for exchange rate prediction 
[Craven & Shavlik, 1997] 



Searching for m-of-n splits 

• m-of-n splits are found via a hill-climbing search 

• initial state: best 1-of-1 (ordinary) binary split 

• evaluation function: information gain 

• operators: 
• m-of-n  =>  m-of-(n+1) 

• 1 of { X1=t, X3=f }   =>  1 of { X1=t, X3=f, X7=t } 

• m-of-n  => (m+1)-of-(n+1)

• 1 of { X1=t, X3=f }  =>  2 of { X1=t, X3=f, X7=t } 



Variant: Lookahead



Lookahead 

• most DT learning methods use a hill-climbing search 

• a limitation of this approach is myopia: an important feature may not 
appear to be informative until used in conjunction with other features 

• can potentially alleviate this limitation by using a lookahead search 
[Norton ‘89; Murphy & Salzberg ‘95] 

• empirically, often doesn’t improve accuracy or tree size 



Choosing best split in ordinary DT learning 

• OrdinaryFindBestSplit (set of training instances D, set of candidate 
splits C) 



Choosing best split with lookahead (part 1) 

• LookaheadFindBestSplit (set of training instances D, set of candidate 
splits C) 



Choosing best split with lookahead (part 2) 



Calculating information gain with lookahead 

• Suppose that when considering Humidity as a split, we find that Wind 
and Temperature are the best features to split on at the next level 

• We can assess value of choosing Humidity as our split by 



Calculating information gain with lookahead 

• Using the tree from the previous slide: 



Comments on decision tree learning 

• widely used approach 

• many variations 

• provides humanly comprehensible models when trees not too big 

• insensitive to monotone transformations of numeric features 

• standard methods learn axis-parallel hypotheses* 

• standard methods not suited to on-line setting* 

• usually not among most accurate learning methods 

* although variants exist that are exceptions to this 


