
Decision Tree Learning
Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Decision Tree up to now,

• Decision tree representation

• A general top-down algorithm

• How to do splitting on numeric features

• Occam’s razor

• entropy and information gain

• types of decision-tree splits

Topics

• Accuracy of decision trees

• Overfitting

• Stopping criteria of decision trees

• Variants of decision trees
• Regression trees

• probability estimation trees

• m-of-n splits

• lookahead

Accuracy of Decision Tree

Definition of Accuracy and Error

• Given a set D of samples and a trained model M, the accuracy is the
percentage of correctly labeled samples. That is,

Where lx is the true label of sample x and M(x) gives the predicted label of x by
M.

• Error is a dual concept of accuracy. But, what is D?

How can we assess the accuracy of a tree?

• Can we just calculate the fraction of training instances that are
correctly classified?

• Consider a problem domain in which instances are assigned labels at
random with P(Y = t) = 0.5
• how accurate would a learned decision tree be on previously unseen

instances?

• how accurate would it be on its training set?

How can we assess the accuracy of a tree?

• to get an unbiased estimate of a learned model’s accuracy, we must
use a set of instances that are held-aside during learning

• this is called a test set

Overfitting

Overfitting

• consider error of model M over
• training data:

• entire distribution of data:

• model overfits the training data if there is an alternative
model such that

Perform better on
training dataset

Perform worse on
ground truth data

Example 1: overfitting with noisy data

• suppose
• the target concept is

• there is noise in some feature values

• we’re given the following training set

Example 1: overfitting with noisy data

A noisy data:
X1 = t
X2 = f
X3 = t
X4 = t
X5 = f
Y = t

Example 1: overfitting with noisy data

• What is the accuracy?
• Accuracy(Dtraining,M) = 5/6

• Accuracy(Dtrue,M) = 100%

Example 1: overfitting with noisy data

• What is the accuracy?
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) < 100%

Example 1: overfitting with noisy data
Training set
accuracy

True accuracy

5/6 100%

100% < 100 %

M2 is
overfitting!

M1

M2

Example 2: overfitting with noise-free data

• suppose
• the target concept is

• P(X3 = t) = 0.5 for both classes

• P(Y = t) = 0.66

• we’re given the following training set

Example 2: overfitting with noise-free data

• What is the accuracy?
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) = 50%

P(X3 = t) = 0.5
P(Y=t) = 0.66

Example 2: overfitting with noise-free data

• What is the accuracy?
• Accuracy(Dtraining,M) = 60%

• Accuracy(Dtrue,M) = 66%

P(X3 = t) = 0.5
P(Y=t) = 0.66

Example 2: overfitting with noise-free data

• because the training set is a limited sample, there might be
(combinations of) features that are correlated with the target concept
by chance

Training set
accuracy

True accuracy

100% 50%

60% 66%

M1

M2

M1 is
overfitting!

Example 2: overfitting with noise-free data

• because the training set is a limited sample, there might be
(combinations of) features that are correlated with the target concept
by chance

Overfitting in decision trees

Example 3: regression using polynomial

Example 3: regression using polynomial

Regression using
polynomial of
degree M

Example 3: regression using polynomial

Example 3: regression using polynomial

Example 3: regression using polynomial

Example 3: regression using polynomial

General phenomenon

Prevent overfitting

• cause: training error and expected error are different
• there may be noise in the training data

• training data is of limited size, resulting in difference from the true
distribution

• larger the hypothesis class, easier to find a hypothesis that fits the difference
between the training data and the true distribution

• prevent overfitting:
• cleaner training data help!

• more training data help!

• throwing away unnecessary hypotheses helps! (Occam’s Razor)

Avoiding overfitting in DT learning

• two general strategies to avoid overfitting
• 1. early stopping: stop if further splitting not justified by a statistical test

• Quinlan’s original approach in ID3

• 2. post-pruning: grow a large tree, then prune back some nodes
• more robust to myopia of greedy tree learning

Stopping criteria

Stopping criteria

• We should form a leaf when
• all of the given subset of instances are of the same class

• we’ve exhausted all of the candidate splits

• Is there a reason to stop earlier, or to prune back the tree?

Pruning in C4.5

• split given data into training and validation (tuning) sets

• Grow a complete tree

• do until further pruning is harmful
• evaluate impact on tuning-set accuracy of pruning each node

• greedily remove the one that most improves tuning-set accuracy

Validation sets

• a validation set (a.k.a. tuning set) is a subset of the training set that is
held aside
• not used for primary training process (e.g. tree growing)

• but used to select among models (e.g. trees pruned to varying degrees)

Variant: Regression Trees

Regression trees

• in a regression tree, leaves have functions that predict numeric values
instead of class labels

• the form of these functions depends on the method
• CART uses constants

• some methods use linear functions

Regression trees in CART

• CART does least squares regression which tries to minimize

• at each internal node, CART chooses the split that most reduces this
quantity

Variant: Probability estimation trees

Probability estimation trees

• in a PE tree, leaves estimate the probability of each class

• could simply use training instances at a leaf to estimate probabilities,
but ...

• smoothing is used to make estimates less extreme (we’ll revisit this
topic when we cover Bayes nets)

Variant: m-of-n splits

m-of-n splits

• a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91]

• each split is constructed using a
heuristic search process

• this can result in smaller, easier to
comprehend trees

test is satisfied if 5 of 10
conditions are true

tree for exchange rate prediction
[Craven & Shavlik, 1997]

Searching for m-of-n splits

• m-of-n splits are found via a hill-climbing search

• initial state: best 1-of-1 (ordinary) binary split

• evaluation function: information gain

• operators:
• m-of-n => m-of-(n+1)

• 1 of { X1=t, X3=f } => 1 of { X1=t, X3=f, X7=t }

• m-of-n => (m+1)-of-(n+1)

• 1 of { X1=t, X3=f } => 2 of { X1=t, X3=f, X7=t }

Variant: Lookahead

Lookahead

• most DT learning methods use a hill-climbing search

• a limitation of this approach is myopia: an important feature may not
appear to be informative until used in conjunction with other features

• can potentially alleviate this limitation by using a lookahead search
[Norton ‘89; Murphy & Salzberg ‘95]

• empirically, often doesn’t improve accuracy or tree size

Choosing best split in ordinary DT learning

• OrdinaryFindBestSplit (set of training instances D, set of candidate
splits C)

Choosing best split with lookahead (part 1)

• LookaheadFindBestSplit (set of training instances D, set of candidate
splits C)

Choosing best split with lookahead (part 2)

Calculating information gain with lookahead

• Suppose that when considering Humidity as a split, we find that Wind
and Temperature are the best features to split on at the next level

• We can assess value of choosing Humidity as our split by

Calculating information gain with lookahead

• Using the tree from the previous slide:

Comments on decision tree learning

• widely used approach

• many variations

• provides humanly comprehensible models when trees not too big

• insensitive to monotone transformations of numeric features

• standard methods learn axis-parallel hypotheses*

• standard methods not suited to on-line setting*

• usually not among most accurate learning methods

* although variants exist that are exceptions to this

