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Up to now,

• Three machine learning algorithms: 
• decision tree learning 

• k-nn

• linear regression
• linear regression 

• linear classification 

• logistic regression 
only optimization 
objectives are 
discussed, but 
how to solve?



Today’s Topics

• Derivative 

• Gradient

• Directional Derivative

• Method of Gradient Descent

• Example: Gradient Descent on Linear Regression 

• Linear Regression: Analytical Solution



Problem Statement: Gradient-Based 
Optimization 
• Most ML algorithms involve optimization 

• Minimize/maximize a function f (x) by altering x 
• Maximization accomplished by minimizing –f(x) 

• f (x) referred to as objective function or criterion 
• In minimization also referred to as loss function cost, or error

• Example: 
• linear least squares 

• Linear regression 

• Denote optimum value by x*=argmin f (x) 



Derivative



Derivative of a function

• Suppose we have function y=f (x), x, y real numbers 
• Derivative of function denoted: f’(x) or as dy/dx 

• Derivative f’(x) gives the slope of f (x) at point x 

• It specifies how to scale a small change in input to obtain a corresponding change in the 
output: 

f (x + Δ) ≈ f (x) + Δ f’ (x)
• It tells how you make a small change in input to make a small improvement in y 

Recall what’s the derivative for the 
following functions: 
f(x) = x2

f(x) = ex

…

How to design Δ?



Calculus in Optimization 

• Suppose we have function                , where x, y are real numbers 

• Sign function: 

• We know that 

for small ε. 

• Therefore, we can reduce   by moving x in small steps with 
opposite sign of derivative 

This technique is 
called gradient 
descent (Cauchy 
1847) 

Why opposite?



Example

• Function f(x) = x2 ε = 0.1

• f’(x) = 2x

• For x = -2, f’(-2) = -4, sign(f’(-2))=-1 

• f(-2- ε*(-1)) = f(-1.9) < f(-2)

• For x = 2, f’(2) = 4, sign(f’(2)) = 1

• f(2- ε*1) = f(1.9) < f(2) 



Gradient Descent Illustrated 

For x>0, f(x) increases with x 
and f’(x)>0 

For x<0, f(x) decreases with x 
and f’(x)<0 

Use f’(x) to follow 
function downhill 

Reduce f(x) by going in direction                                                         
opposite sign of derivative f’(x) 



Stationary points, Local Optima 

• When derivative provides no information about direction of 
move 

• Points where are known as stationary or critical points 
• Local minimum/maximum: a point where f(x) lower/ higher than all its 

neighbors

• Saddle Points: neither maxima nor minima 



Presence of multiple minima 

• Optimization algorithms may fail to find global minimum 

• Generally accept such solutions 



Gradient



Minimizing with multiple dimensional inputs 

• We often minimize functions with multiple-dimensional inputs

• For minimization to make sense there must still be only one (scalar) 
output 



Functions with multiple inputs 

• Partial derivatives 

measures how f changes as only variable xi increases at point x 

• Gradient generalizes notion of derivative where derivative is wrt a 
vector 

• Gradient is vector containing all of the partial derivatives denoted 



Example

• y = 5x1
5 + 4x2 + x3

2  + 2

• so what is the exact gradient on instance (1,2,3)?

• the gradient is (25x1
4, 4, 2x3)

• On the instance (1,2,3), it is (25,4,6)



Functions with multiple inputs 

• Gradient is vector containing all of the partial derivatives denoted 

• Element i of the gradient is the partial derivative of f wrt xi

• Critical points are where every element of the gradient is equal to 
zero 



Example

• y = 5x1
5 + 4x2 + x3

2  + 2

• so what are the critical points? 

• the gradient is (25x1
4, 4, 2x3)

• We let 25x1
4 = 0 and 2x3 = 0, so all instances whose x1 and x3 are 0. 

but 4 /= 0. So there is no critical point. 



Directional Derivative 



Recap: dot product in linear algebra

Geometric meaning: can be 
used to understand the angle 
between two vectors



Directional Derivative 

• Directional derivative in direction       (a unit vector) is the slope of 
function in direction 

• This evaluates to

• Example: let                              be a unit vector in Cartesian 
coordinates, so 

then



Directional Derivative 

• To minimize f find direction in which f decreases the fastest 

• where is angle between     and the gradient 
• Substitute                    and ignore factors that not depend on      this simplifies 

to 

• This is minimized when      points in direction opposite to gradient 

• In other words, the gradient points directly uphill, and the negative 
gradient points directly downhill 



Method of Gradient Descent 



Method of Gradient Descent 

• The gradient points directly uphill, and the negative gradient points 
directly downhill 

• Thus we can decrease f  by moving in the direction of the negative 
gradient 
• This is known as the method of steepest descent or gradient descent 

• Steepest descent proposes a new point 

• where is the learning rate, a positive scalar. Set to a small constant. 



Choosing : Line Search 

• We can choose in several different ways 

• Popular approach: set     to a small constant 

• Another approach is called line search: 
• Evaluate 

for several values of and choose the one that results in smallest objective 
function value 



Example: Gradient Descent on Linear 
Regression



Example: Gradient Descent on Linear 
Regression

• Linear regression: 

• The gradient is



Example: Gradient Descent on Linear 
Regression

• Linear regression: 

• The gradient is

• Gradient Descent algorithm is 
• Set step size , tolerance δ to small, positive numbers. 

• While     do 



Linear Regression: Analytical 
solution



Convergence of Steepest Descent 

• Steepest descent converges when every element of the gradient is 
zero 
• In practice, very close to zero 

• We may be able to avoid iterative algorithm and jump to the critical 
point by solving the following equation for x



Linear Regression: Analytical solution

• Linear regression: 

• The gradient is

• Let

• Then, we have  



Linear Regression: Analytical solution

• Algebraic view of the minimizer

• If 𝑋 is invertible, just solve 𝑋𝑤 = 𝑦 and get 𝑤 = 𝑋−1𝑦

• But typically 𝑋 is a tall matrix 



Generalization to discrete spaces 



Generalization to discrete spaces 

• Gradient descent is limited to continuous spaces 

• Concept of repeatedly making the best small move can be generalized 
to discrete spaces 

• Ascending an objective function of discrete parameters is called hill 
climbing 



Exercises

• Given a function f(x)= ex/(1+ex), how many critical points? 

• Given a function f(x1,x2)= 9x1
2+3x2+4, how many critical points? 

• Please write a program to do the following: given any differentiable 
function (such as the above two), an ε, and a starting x and a target x’, 
determine whether it is possible to reach x’ from x. If possible, how 
many steps? You can adjust ε to see the change of the answer. 


