Introduction to Tensorflow

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

* Overview of Machine Learning
* Traditional Machine Learning Algorithms

* Deep Learning
* Introduction
 Functional view & features

* Forward and backward computation
* CNNs

Today’s topic

* Where learning is used?
* Introduction to Tensorflow
* Example: Linear Regression in TensorFlow

Perception-Cognition-Action Loop

Environment

Perception, including
visual recognition,
voice recognition, etc

!:> Cogpnition, focusing on
probabilistic inference

Action, focusing on
planning

Autonomous Agent

Teaching content:
traditional learning,
deep learning

Perception

Ill“llll'llllllll‘hq{ M\ |

i g,
[shoes
R . purse
i top
il necklace
] - fi
|.shn

£

cars

Visual Recognition Voice Recognition

Teaching content:
Probabilistic graphical models

Cognition by Probabilistic Inference

Smokes
T F
0.2 0.8

Lung Disease
Smokes| T -
1 % 0.1009]0.8991
F 0.001 | 0.999
hortness
of Breath
Shortness
of Breath Chest Pain
Lung T F Lung T F
Disease Disease
T 0.208 [0.792 T 0.208 | 0.792
F 0.01 | 0.99 F 0.01 | 0.99

Cough Fever
lung | Cold | T F cod | T -
Disease

T T |0.7525|0.2475 T |[0.307|0.693
T F |0.505 | 0.495 F | 001|099
F T |0.505]|0.495
F F | 001 | 099

Q. how to automatically
infer the disease (e.g.,
lung disease, cold, etc)
from the symptoms (e.g.,
smokes, shortness of
breath, chest pain,
cough, fever, etc)?

Note: Symptoms obtained
from perception.

Teaching content:
in other modules, e.g., COMP111,
COMP222

Action by Planning

After cognition, we may use
the obtained knowledge to
react to the environment

Q: in the factory floor as
shown in the left diagram,
how many robots is needed
to patrol the area? and how
to plan their activities?

What’s left?

action, e.g.,
planning

environment

= wedge

A

inference

sampling

A 4
\ learning

dataset

structural representation, e.g.,
Probabilistic graphical model

A 4

perception

Introduction to Tensorflow

Deep-Learning Package Desigh Choices

* Model specification:
» Configuration file (e.g. Caffe, DistBelief, CNTK) versus
e programmatic generation (e.g. Torch, Theano, Tensorflow)

| used these two

* For programmatic models, choice of high-level language:
e Lua (Torch) vs. Python (Theano, Tensorflow) vs others.

* We chose to work with python because of rich community and library
infrastructure.

What is TensorFlow?

* TensorFlow is a deep learning library open-sourced by Google.

e But what does it actually do?

* TensorFlow provides primitives for defining functions on tensors and
automatically computing their derivatives.

nr\

lensor

But what’s a Tensor?

* Formally, tensors are multilinear maps from vector spaces to the real
numbers (V vector space, and V* dual space)

* * . " w * . s w
f.Vx-VxVx-V—HR
P coples g coples
A scalarisatensor (f:R = R, f(e;) =c)
A vector is a tensor (f: R" = R, f(e;) = v;)

A matrix is a tensor (f : R" x R™ = R, f(e;, e5) = A;j)

* Common to have fixed basis, so a tensor can be represented as a
multidimensional array of numbers.

TensorFlow vs. Numpy

* Few people make this comparison, but TensorFlow and Numpy are
quite similar. (Both are N-d array libraries!)

* Numpy has Ndarray support, but doesn’t offer methods to create
tensor functions and automatically compute derivatives (+ no GPU
support).

£

VS “ l.""

lensor

Simple Numpy Recap

In [23]: import numpy as np
In [24]: a = np.zeros((2,2)); b = np.ones((2,2))

In [25]: np.sum(b, axis=1)
Out[25]: array([2., 2.])

In [26]: a.shape
Out[26]: (2, 2)

In [27]: np.reshape(a, (1,4))
Out[27]: array([[©., ©., 0., 0.]])

More on Session

Repeat in TensorFlow soon

In [31]:

In [32]:

In [33]:

In [34]:
Out[34]:

In [35]:
Out[35]:

In [36]:
Out[36]:

import tensorflow as tf

tf.InteractiveSession()

a = tf.zeros((2,2)); b = tf.ones((2,2))

tf.reduce_sum(b, reduction_indices=1).eval()
2.], dtype=float32)

like a python tuple.
a.get_shape()

TensorShape([Dimension(2), Dimension(2)])

array([2.,

tf.reshape(a, (1, 4)).eval()

array([[©.,

%

Sl

%

e

0.]], dtype=float32)

More on .eval ()
in a few slides

TensorShape behaves

Numpy to TensorFlow Dictionary

Numpy TensorFlow

a = np.zeros((2,2)); b = np.ones((2,2)) .a = tf.zeros((2,2)), b = tf.ones((2,2))
np.sum(b, axis=1) tf.reduce_sum(a,reduction_indices=[1])
a.shape ‘a.get_shape()
np.reshape(a, (1,4)) 'tf.reshape(a, (1,4))

b*5+ 1 lb * 5 .+ 1
np.dot(a,b) ’tf.matmul(a, b)

al[o,0], a[:,0], a[o,:] ‘a[O,G], al:,0], alg;:]

TensorFlow requires explicit evaluation!

In [37]: a = np.zeros((2,2))

In [38]: ta = tf.zeros((2,2)) TensorFlow computations define a

computation graph that has no numerical

In [39]: print(a) value until evaluated!
[9. @.]
[2. “8:]]

In [40]: print(ta)
Tensor("zeros _1:0", shape=(2, 2), dtype=float32)

In [41]: print(ta.eval())
[[. ©.]
[9. 0.1}

TensorFlow Session Object (1)

* “A Session object encapsulates the environment in which Tensor
objects are evaluated”

In [20]: a = tf.constant(5.0)

In [21]: b = tf.constant(6.0)
c.eval () is just syntactic sugar for
In [22]: c=a * b sess.run(c) in the currently active
session!
In [23]: with tf.Session() as sess:
ceeat print(sess.run(c)) , —
ceeat print(c.eval())
30.0
30.0

TensorFlow Session Object (2)

e tf.InteractiveSession() is just convenient syntactic sugar for keeping a
default session open in ipython.

* sess.run(c) is an example of a TensorFlow Fetch. Will say more on this
soon

Tensorflow Computation Graph

* “TensorFlow programs are usually structured into
* a construction phase, that assembles a graph, and
* an execution phase that uses a session to execute ops in the graph.”

* All computations add nodes to global default graph

TensorFlow Variables (1)

* “When you train a model you use variables to hold and update
parameters. Variables are in-memory buffers containing tensors”

 All tensors we’ve used previously have been constant tensors, not
variables

TensorFlow Variables (2)

In [32]: W1 = tf.ones((2,2))

In [33]: W2 = tf.vVariable(tf.zeros((2,2)), name="weights")

In [34]: with tf.Session() as sess:
print(sess.run(Wl))
sess.run(tf.initialize all variables())
print(sess.run(W2))

Note the initialization step tf.
] initialize_all_variables()

TensorFlow Variables (3)

* TensorFlow variables must be initialized before they have values!
Contrast with constant tensors

Variable objects can be

In [38]: W = tf.Variable(tf.zeros((2,2)), name="weights") initialized from constants or
random values
In [39]: R = tf.Variable(tf.random_normal((2,2)), name="random weights")

In [40]: with tf.Session() as sess:
PP sess.run(tf.initialize all variables())
= print(sess.run(W)) ‘\\\\\\\
oz S print(sess.run(R)) Initializes all variables with
specified values.

Updating Variable State

In [63]: state = tf.Variable(®, name="counter")

In [64]: new_value = tf.add(state, tf.constant(1))«——— Roughly new value =

state + 1

In [65]: update = tf.assign(state, new_value) ——— Roughly state = new_value

In [66]: with tf.Session() as sess: Roughly
eeonl sess.run(tf.initialize_all variables()) state = @
ceat print(sess.run(state)) print(state)
et for _ in range(3): +f—F~—‘_”_’_’_P~‘fbr _ in range(3):

I sess.run(update)
I print(sess.run(state))

state = state + 1
print(state)

w N = ®

Fetching Variable State (1)

In [82]: inputl = tf.constant(3.0) Calling sess.run(var) on a tf.Session() object
In [83]: input2 = tf.constant(2.9) retrieves its value. Can retrieve multiple variables

In [84]: input3 = tf.constant(5.0) : :
simultaneously with .run([varl, var2
In [85]: intermed = tf.add(input2, input3) Y e (L g 1
(See Fetches in TF docs)

In [86]: mul = tf.mul(inputl, intermed)

In [87]: with tf.Session() as sess:
AP result = sess.run([mul, intermed])
. print(result)

[21.0, 7.0]

Fetching Variable State (2)

Inputting Data

 All previous examples have manually defined tensors. How can we
input external data into TensorFlow?

e Simple solution: Import from Numpy:

In [93]: a = np.zeros((3,3))

In [94]: ta = tf.convert_to tensor(a)

In [95]: with tf.Session() as sess:
TR print(sess.run(ta))

Placeholders and Feed Dictionaries (1)

* Inputting data with tf.convert_to_tensor() is convenient, but doesn’t
scale.

e Use tf.placeholder variables (dummy nodes that provide entry points
for data to computational graph).

* A feed dict is a python dictionary mapping from tf. placeholder vars
(or their names) to data (numpy arrays, lists, etc.).

Placeholders and Feed Dictionaries (2)

In [96]: inputl = tf.placeholder(tf.float32) ‘
Define tf.placeholder

objects for data entry.

In [97]: input2 = tf.placeholder(tf.float32)
In [98]: output = tf.mul(inputl, input2)

In [99]: with tf.Session() as sess:
R print(sess.run([output], feed_dict={inputl:[7.], input2:[2.]}))

[array([14.], dtype=float32)]

Fetch value of output Feed data into
from computation graph. computation graph.

Placeholders and Feed Dictionaries (3)

output

Variable Scope (1)

* Complicated TensorFlow models can have hundreds of variables.
* tf.variable scope() provides simple name-spacing to avoid clashes.
* tf.get variable() creates/accesses variables from within a variable scope.

Variable Scope (2)

* Variable scope is a simple type of namespacing that adds prefixes to
variable names within scope

with tf.variable_scope("foo"):
with tf.variable_scope("bar"):
v = tf.get variable("v", [1])
assert v.name == "foo/bar/v:0"

Variable Scope (3)

* Variable scopes control variable (re)use

with tf.variable_scope("foo0"):
v = tf.get _variable("v", [1])
tf.get variable scope().reuse_variables()
vl = tf.get_variable("v", [1])

assert vl == v

* You'll need to use reuse_variables() to implement RNNs in homework

Ex: Linear Regression in TensorFlow (1)

import numpy as np
import seaborn 100

Define input data
X_data = np.arange(100, step=.1)
y data = X data + 20 * np.sin(X _data/10) “

Plot input data
plt.scatter(X data, y data)

2 40 0

Ex: Linear Regression in TensorFlow (2)

Define data size and batch size
n_samples = 1000
batch _size = 100

Tensorflow is finicky about shapes, so resize
X_data = np.reshape(X_data, (n_samples,1))
y_data = np.reshape(y_data, (n_samples,1))

Define placeholders for input
X = tf.placeholder(tf.float32, shape=(batch_size, 1))
y = tf.placeholder(tf.float32, shape=(batch_size, 1))

Ex: Linear Regression in TensorFlow (3)

Define variables to be learned Note reuse=False so
with tf.variable_scope("linear—regression"):‘//////////////////thesetensonsa“e
W = tf.get variable("weights", (1, 1), created anew
initializer=tf.random normal initializer())
b = tf.get_variable("bias", (1,),
initializer=tf.constant_initializer(0.9))

y_pred = tf.matmul(X, W) + b
loss = tf.reduce_sum((y - y_pred)**2/n_samples)

Ex: Linear Regression in TensorFlow (4)

Sample code to run one step of gradient descent

In [136]: opt = tf.train.AdamOptimizer() fg’f‘;yﬁgiizﬂsﬁﬁif

____— variable Loss is still visible.

In [137]: opt_operation = opt.minimize(loss)

In [138]: with tf.Session() as sess:
et sess.run(tf.initialize all variables())
et sess.run([opt_operation], feed _dict={X: X_data, y: y_data})

But how does this actually work under the
hood? Will return to TensorFlow
computation graphs and explain.

Ex: Linear Regression in TensorFlow (4)

Sample code to run full gradient descent:
Define optimizer operation

opt_operation = tf.train.AdamOptimizer().minimize(loss)

ith tf.S] :
with tf.Session() as sess Let’s do a deeper.

graphical dive into
this operation

Initialize Variables in graph
sess.run(tf.initialize all variables())
Gradient descent loop for 500 steps
for _ in range(500):
Select random minibatch
indices = np.random.choice(n_samples, batch_size)
X batch, y batch = X data[indices], y data[indices]
Do gradient descent step

_, loss_val = sess.run([opt_operation, loss], feed dict={X: X_batch, y: y batch})

Ex: Linear Regression in TensorFlow (6)

120

100

60

20

—-20

20

100

120

Learned model offers nice
fit to data.

Concept: Auto-Differentiation

* Linear regression example computed L? loss for a linear regression
system. How can we fit model to data?
* tf.train.Optimizer creates an optimizer.

e tf.train.Optimizer.minimize(loss, var_list) adds optimization operation to
computation graph.

* Automatic differentiation computes gradients without user input!

TensorFlow Gradient Computation

* TensorFlow nodes in computation graph have attached gradient
operations.

e Use backpropagation (using node-specific gradient ops) to compute
required gradients for all variables in graph.

TensorBoard

* TensorFlow has some neat built-in visualization tools (TensorBoard).

 We won’t use TensorBoard for assignments, but encourage you to
check it out for your projects.

