Machine Learning Overview

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

In the last lecture,

- Module Information
- Contents of the module

Today's Content

- Contents of the module (cont.)
- What is machine learning?
- A few applications of machine learning
- consider how to represent instances as fixed-length feature vectors
- define the supervised and unsupervised learning tasks

Contents of this module

- Introduction
- preliminary knowledge (probabilistic foundation, linear algebra)
- Traditional machine learning (gradient descent, decision tree learning, K-nn, model evaluation, linear regression, naïve Bayes)
- Practical tutorial (python, tensorflow)
- Deep learning
- Probabilistic graphical models
- (optional) advanced topics

Credits

• I used many resources from the web

What is Machine Learning?

- (Software) programs that can improve their performance by applying learning algorithm on training data
- Typically the program has a (large) number of parameters whose values are learnt from the data

A few applications of machine learning

Where Machine Learning is used/useful?

- Can be applied in situations where it is very challenging (= impossible) to define rules by hand, e.g.:
 - Face detection
 - Speech recognition
 - Stock prediction

When the application is able to be programmed with reasonable efforts, DO NOT use machine learning!

Example 1: hand-written digit recognition

Images are 28 x 28 pixels

Represent input image as a vector $x \in \mathbb{R}^{784}$, learn a classifier f(x) such that

$$f: \mathbf{R}^{784} \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

How to proceed ...

- As a supervised classification problem
- Start with training data, e.g. 6000 examples of each digit
 - 00011(1112
 - 222232333
 - 3449445555
 - 447777888
 - 888194999
- Can achieve testing error of 0.4%
- One of the first commercial and widely used ML systems (for zip codes & checks)

Example 2: Face detection

- Again, a supervised classification problem
- Need to classify an image window into three classes:
 - non-face
 - frontal-face
 - profile-face

Classifier is learnt from labelled data

- Training data for frontal faces
 - 5000 faces
 - All near frontal
 - Age, race, gender, lighting
 - 10⁸ non faces
 - faces are normalized
 - scale, translation (a translation is a geometric transformation that moves every point of a figure or a space by the same distance in a given direction)

Example 3: Spam detection

- This is a classification problem
- Task is to classify email into spam/non-spam
- Data x_i is word count, e.g. of viagra, outperform, "you may be surprised to be contacted" ...
- Requires a learning system as "enemy" keeps innovating

Example 4: Stock price prediction

- Task is to predict stock price at future date
- This is a regression task, as the output is continuous

Example 5: Computational biology

AVITGACERDLQCG KGTCCAVSLWIKSV RVCTPVGTSGEDCH PASHKIPFSGQRMH HTCPCAPNLACVQT SPKKFKCLSK

 \mathbf{X}

Protein Structure and Disulfide Bridges

Regression task: given sequence predict 3D structure

Protein: 1IMT

У

- Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence
- based on the dataset alone, the algorithm can learn how to combine multiple <u>features</u> of the input data into a more abstract set of features from which to conduct further learning

Web examples: Machine translation

Use of aligned text

Χ

What is the anticipated cost of collecting fees under the new proposal?

En vertu des nouvelles propositions, quel est le coût prévu de perception des droits?

e.g. Google translate

Web examples: Recommender systems

People who bought Hastie ...

Frequently Bought Together

Customers buy this book with <u>Pattern Recognition and Machine Learning (Information Science and Statistics) (Information</u> <u>Science and Statistics</u>) by Christopher M. Bishop

Customers Who Bought This Item Also Bought

Show related items

MACHINE LEARNING (Mcgraw-Hill International Edit) by Thom M. Mitchell

Show related items

Pattern Classification, Second Edition: 1 (A Wi... by Richard O. Duda

Show related items

Data Mining: Practical Machine Learning Tools a... by Ian H. Witten

Show related items

Page 1

represent instances as fixed-length feature vectors

Can I eat this mushroom?

I don't know what type it is – I've never seen it before. Is it edible or poisonous?

Can I eat this mushroom?

suppose we're given examples of edible and poisonous mushrooms (we'll refer to these as *training examples* or *training instances*)

Representing instances using feature vectors

- we need some way to represent each instance
- one common way to do this: use a fixed-length vector to represent features (a.k.a. attributes) of each instance

class

= poisonous

= edible

• also represent *class label* of each instance

$$\mathbf{x}^{(1)} = \langle \text{bell}, \text{ fibrous, gray, false, foul,...} \rangle \qquad y^{(1)} = \text{edible}$$

$$\mathbf{x}^{(2)} = \langle \text{convex, scaly, purple, false, musty,...} \rangle \qquad y^{(2)} = \text{poison}$$

$$\mathbf{x}^{(3)} = \langle \text{bell, smooth, red, true, musty,...} \rangle \qquad y^{(3)} = \text{edible}$$

Standard feature types

- nominal (including Boolean)
 - no ordering among possible values
 - e.g. color ∈ {red, blue, green} (vs. color = 1000 Hertz)
- ordinal
 - possible values of the feature are totally ordered e.g. size ∈ {small, medium, large}
- numeric (continuous)
 - *E.g., weight* ∈ [0...500]
- hierarchical
 - possible values are partially *ordered* in a hierarchy

Feature hierarchy example

• Lawrence et al., Data Mining and Knowledge Discovery 5(1-2), 2001

Feature space

 we can think of each instance as representing a point in a ddimensional feature space where d is the number of features

example: optical properties of oceans in three spectral bands [Traykovski and Sosik, Ocean Optics XIV Conference Proceedings, 1998]

Another view of the feature-vector representation: a single database table

	feature 1	feature 2	 feature d	class
instance 1	0.0	small	red	true
instance 2	9.3	medium	red	false
instance 3	8.2	small	blue	false
instance n	5.7	medium	green	true