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Part 1: Basic Knowledge 



The supervised learning task 

• problem setting 
• set of possible instances: X 

• unknown target function: 

• set of models (a.k.a. hypotheses): 

• given training set of instances of unknown target function f 

• Output
• model    that best approximates target function 



Unsupervised learning 

• in unsupervised learning, we’re given a set of instances, without y’s 

x(1),x(2) ... x(m)

goal: discover interesting regularities/structures/patterns that 
characterize the instances 

• common unsupervised learning tasks
• clustering 
• anomaly detection 
• dimensionality reduction 



Clustering 

• given 
• training set of instances x(1) , x(2) ... x(m) 

• output 
• model that divides the training set into clusters such that there is 

intra-cluster similarity and inter-cluster dissimilarity 



Dimensionality reduction 

• given 
• training set of instances x(1) , x(2) ... x(m) 

• output 
• Model    that represents each x with a lower-dimension feature vector 

while still preserving key properties of the data 



Marginal, joint, conditional probability

• Marginal probability: the probability of an event occurring (p(A)), it may be thought of as an 
unconditional probability. It is not conditioned on another event.
• Example: the probability that a card drawn is red (p(red) = 0.5).
• Another example: the probability that a card drawn is a 4 (p(four)=1/13).

• Joint probability: p(A and B). The probability of event A and event B occurring. It is the 
probability of the intersection of two or more events. The probability of the intersection of A and 
B may be written p(A ∩ B). 
• Example: the probability that a card is a four and red =p(four and red) = 2/52=1/26. (There are two red fours 

in a deck of 52, the 4 of hearts and the 4 of diamonds).

• Conditional probability: p(A|B) is the probability of event A occurring, given that event B occurs. 
• Example: given that you drew a red card, what’s the probability that it’s a four (p(four|red))=2/26=1/13. So 

out of the 26 red cards (given a red card), there are two fours so 2/26=1/13.



Conditional Probability 

• P(Intelligence|Grade=A) describes the distribution over events 
describable by Intelligence given the knowledge that student’s grade 
is A 
• It is not the same as the marginal distribution 



Chain Rules

chain rule (also called the general product rule[1][2]) permits the calculation of any member of the joint 
distribution of a set of random variables using only conditional probabilities.

https://en.wikipedia.org/wiki/Chain_rule_(probability)#cite_note-FOOTNOTESchum1994-1
https://en.wikipedia.org/wiki/Chain_rule_(probability)#cite_note-FOOTNOTEKlugh2013-2
https://en.wikipedia.org/wiki/Joint_distribution
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Conditional_probabilities


Max vs. argmax

• Let x be in a range [a,b] and f be a function over [a,b], we have 
• max f(x) to represent the maximum value of f(x) as x varies through [a,b] 

• argmax f(x) to represent the value of x at which the maximum is attained

• maxx sin(x) 

= 1

• argmaxx sin(x) 

= {(0.5+2n)*pi | n is integer }

= {…, -1.5pi, 0.5pi, 2.5pi, …}



Query Types 

• Probability Queries
• Given evidence (the values of a subset of random variables), 

• compute distribution of another subset of random variables

• MAP Queries
• Maximum a posteriori probability 

• Also called MPE (Most Probable Explanation) 
• What is the most likely setting of a subset of random variables

• Marginal MAP Queries
• When some variables are known 



MAP Queries (Most Probable Explanation) 

• Finding a high probability assignment to some subset of variables 

• Most likely assignment to all non-evidence variables W = V – E 

i.e., value of w for which P(w,e) is maximum 

• Difference from probability query 
• Instead of a probability we get the most likely value for all remaining variables 



Example of MAP Queries 

• Medical Diagnosis Problem 
• Diseases (A) cause Symptoms (B) 

• Two possible diseases: Mono and Flu 

• Two possible symptoms: Headache and Fever

• Q2: Most likely disease and symptom P(A,B)? 



LP Norm 

• Definition 

• L2 Norm
• Called Euclidean norm, written simply as

• Squared Euclidean norm is same as 



LP Norm 

• Definition 

• L1 Norm
• also called Manhattan distance 



LP Norm 

• Definition 

• Norm
• also called max norm



Norms of two-dimensional Point
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Basics of Numpy

numpy.linspace:
evenly spaced numbers over a 
specified interval.

numpy.arange:
evenly spaced values within a 
given interval.



Matrix operations 

• First, define some matrices: 



Part 2: Simple Learning Models



Decision tree exercise 

• Suppose X1 ... X5 are Boolean features, and Y is also Boolean 

• How would you represent the following with decision trees? 



Decision tree exercise 



Entropy 

• entropy is a measure of uncertainty associated with a random 
variable 

• defined as the expected number of bits required to communicate the 
value of the variable 



Information gain (a.k.a. mutual information) 

• choosing splits in ID3: select the split S that most reduces the 
conditional entropy of Y for training set D 



How can we determine similarity/distance 

• Example: X = (Height, Weight, RunningSpeed)  Y = SoccerPlayer? 
• D: in the table

• New instance: <185, 91, 13.0>

• Suppose that Euclidean distance is used. 

• Is this person a soccer player? 

v1 v2 v3 y

182 87 11.3 No

189 92 12.3 Yes

178 79 10.6 Yes

183 90 12.7 No

185 91 13.0New datum



Stratified sampling 

• When randomly selecting training or validation sets, we may want to 
ensure that class proportions are maintained in each selected set 

Recall: a validation set 
(a.k.a. tuning set) is a 
subset of the training set 
that is held aside 

Validation datasets can be used 
for regularization by early stopping: 
stop training when the error on the 
validation dataset increases, as this 
is a sign of overfitting to the 
training dataset

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Early_stopping
https://en.wikipedia.org/wiki/Overfitting


Confusion matrix for 2-class problems 



k-nearest-neighbor classification 

• classification task
• given: an instance x(q) to classify 

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are the most similar 
to x(q)

• return the class value 

• (i.e. return the class that have the most instances) 



k-nearest-neighbor regression 

• learning stage
• given a training set (x(1) , y(1)) ... (x(m) , y(m)), do nothing 
• (it’s sometimes called a lazy learner) 

• classification stage
• given: an instance x(q) to classify

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are most similar to 
x(q)

• return the value



Linear regression 

• Given training data                                               i.i.d. from distribution 𝐷

• Find                           that minimises 

• where
• represents the error of instance  

• represents the square error of all training instances 

Hypothesis Class H

L2 loss, or mean 
square error

represents the mean square error of all training instancesSo,



Functions with multiple inputs 

• Gradient is vector containing all of the partial derivatives denoted 

• Element i of the gradient is the partial derivative of f wrt xi

• Critical points are where every element of the gradient is equal to 
zero 



Naïve Bayes 

• Naïve Bayes assumes 



Part 3: Deep Learning



Perceptrons

• Rosenblatt proposed a machine for binary classifications 

• Main idea
• One weight 𝑤𝑖 per input 𝑥𝑖
• Multiply weights with respective inputs and add bias 𝑥0 =+1 

• If result larger than threshold return 1, otherwise 0 



Training a perceptron 

• Rosenblatt’s innovation was mainly the learning algorithm for 
perceptrons

• Learning algorithm 
• Initialize weights randomly 

• Take one sample 𝑥𝑖 and predict 𝑦𝑖
• For erroneous predictions update weights

• If the output was                  and 𝑦𝑖 = 1, increase weights 

• If the output was                  and 𝑦𝑖 = 0, decrease weights 

Repeat until no errors are made 

η is learning rate;
set to value << 1



XOR & Multi-layer Perceptrons

• However, the exclusive or (XOR) cannot be solved by perceptrons
• [Minsky and Papert, “Perceptrons”, 1969] 



So, why now? 

• Better hardware 

• Bigger data 

• Better regularization methods, such as dropout 

• Better optimization methods, such as Adam, batch normalization 



How to get good features? 

• High-dimensional data (e.g. faces) lie in lower dimensional manifolds

• This is so-called "swiss roll". The data points are in 3d, but they all lie on 2d 
manifold, so the dimensionality of the manifold is 2, while the 
dimensionality of the input space is 3.

Every point 
represents an 
input sample. 



How to get good features? 

• High-dimensional data (e.g. faces) lie in lower dimensional manifolds

• Although the data points may consist of thousands of features, they 
may be described as a function of only a few underlying parameters. 
• That is, the data points are actually samples from a low-dimensional manifold 

that is embedded in a high-dimensional space.

• Goal: discover these lower dimensional manifolds
• These manifolds are most probably highly non-linear 



How to get good features? 

• High-dimensional data (e.g. faces) lie in lower dimensional manifolds
• Goal: discover these lower dimensional manifolds

• These manifolds are most probably highly non-linear 

• Hypothesis (1): Compute the coordinates of the input (e.g. a face 
image) to this non-linear manifold -> data become separable 

• Hypothesis (2): Semantically similar things lie closer together than 
semantically dissimilar things 



Chain rule 

• Assume a nested function, 𝑧 = 𝑓(𝑦) and y= g(x) 

• Chain Rule for scalars 𝑥, 𝑦, 𝑧

• When 𝑥∈ R𝑚,𝑦∈ R𝑛, 𝑧∈R 

• i.e., gradients from all possible paths 



Chain rule 

• Assume a nested function, 𝑧 = 𝑓(𝑦) and y= g(x) 

• Chain Rule for scalars 𝑥, 𝑦, 𝑧

• When 𝑥∈ R𝑚,𝑦∈ R𝑛, 𝑧∈R 

• i.e., gradients from all possible paths 



Illustration 2: two dimensional case 



Illustration 2 



Zero-Padding

0 0 0 0 0 0

0 a b c d 0

0 e f g h 0

0 i j k l 0

0 0 0 0 0 0

a b c d

e f g h

i j k l

What’s the shape of the 
resulting matrix?

w x

y z

filter

Input



Max-pooling

1 3 4 5

7 2 9 1

9 2 4 7

4 3 6 2

7 9

9 7

max{1,3,7,2} = 7

max{4,7,6,2} = 7

max{4,5,1,9} = 9

max{9,2,3,4} = 9



Part 4: Probabilistic Graphical 
Models



So What is a Graphical Model? 

• In a nutshell, 

GM = Multivariate Statistics + Structure 



What is a Graphical Model? 

• The informal blurb: 
• It is a smart way to write/specify/compose/design exponentially-large probability 

distributions without paying an exponential cost, and at the same time endow the 
distributions with structured semantics 

• A more formal description: 
• It refers to a family of distributions on a set of random variables that are compatible 

with all the probabilistic independence propositions encoded by a graph that 
connects these variables 



Naïve Bayes Model 

• represents grades A, B, C 

I

G S

I g1 g2 g3

i0 0.2 0.34 0.46

i1 0.74 0.17 0.09

I s0 s1

I0 0.95 0.05

i1 0.2 0.8

i0 i1

0.7 0.3



Recall: Naïve Bayes Model 

• Score and Grade are independent given Intelligence (assumption) 
• Knowing Intelligence, Score gives no information about class grade 

• Assertions
• From probabilistic reasoning

• From assumption 

• Combining, we have 
Three binomials, 
two 3-value multinomials: 
7 params
More compact than joint distribution 

Therefore,



Local Independencies in a BN 

• A BN G is a directed acyclic graph whose nodes represent random 
variables Xi,..,Xn. 

• Let Pa(Xi) denote parents of Xi in G 

• Let Non-Desc(Xi) denote variables in G that are not descendants of Xi

• Then G encodes the following set of conditional independence 
assumptions denoted I(G) 
• For each Xi: (Xi ⊥ Non-Desc(Xi)| Pa(Xi)) 

• Also known as Local Markov Independencies 



Local Independencies 

• Graph G with CPDs  is equivalent to a set of independence assertions

• Local Conditional Independence Assertions (starting from leaf nodes):

• Parents of a variable shield it from probabilistic influence
• Once value of parents known, no influence of ancestors

• Information about descendants can change beliefs about a node 



Evaluating a Joint Probability 



Reasoning Patterns 

• Reasoning about a student George using the model 



P(l1)=0.502 

P(l1|i0)=0.389 

After knowing that 
the student is not as 
intelligent,  we 
understand that the 
probability of getting 
a strong 
recommendation 
letter is lower. 

P(l1|i0, d0)=0.513

After further knowing 
that the difficulty is 
low, the probability of 
getting a strong letter 
is higher.



P(i1)=0.3 P(i1|g3)=0.079 P(d1|g3)=0.629

P(i1|l0)=0.14

low grade drastically 
decreases the 
probability of high 
intelligence

A weak letter drastically 
decreases the 
probability of high 
intelligence

low grade justifies the 
difficulty 



Intercausal reasoning 

• The previous example: 
• Information about Score gave us information about Intelligence which with 

Grade told us about difficulty of course

• One causal factor for Grade, i.e., Intelligence, give us information about another 
(Difficulty)



Direct Connection between X and Y 

• X and Y are correlated regardless of 
any evidence about any other variables 
• E.g., Feature Y and character X are 

correlated 

• Grade G and Letter L are correlated 

• If X and Y are directly connected we 
can get examples where they influence 
each other regardless of Z 

Y

X



Indirect Connection between X and Y 

• Four cases where X and Y are connected via Z 

• (a). Indirect causal effect

• (b). Indirect evidential effect

• (c). Common cause 

• (d). Common effect

• We will see that first three cases are similar while fourth case (V-
structure) is different



Summary of Indirect Connection

• Causal trail: X->Z->Y: active iff Z not observed 

• Evidential Trail: X<-Z<-Y: active iff Z is not observed

• Common Cause: X<-Z->Y: active iff Z is not observed

• Common Effect: X->Z<-Y: active iff either Z or one of its descendants 
is observed 

What is the general case? 



Active / Inactive Paths 

• Question: Are X and Y conditionally independent given 
evidence variables {Z}? 
• Yes,if X and Y “d-separated” by Z
• Consider all (undirected) paths from X to Y 
• If no path is active -> independence! 

• A path is active if every triple in path is active:
• Causal chain A -> B -> C where B is unobserved (either direction) 
• Commoncause A <- B -> C where B is unobserved 
• Common effect (aka v-structure) 

A -> B <- C where B or one of its descendants is observed 

• All it takes to block a path is a single inactive segment 
• (But all paths must be inactive) 



Example 


