Decision Tree Learning

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/
Decision Tree up to now,

- Decision tree representation
- A general top-down algorithm
- How to do splitting on numeric features
- Occam’s razor
Today’s Topics

• Entropy and information gain
• Types of decision-tree splits
• Stopping criteria of decision trees
• Accuracy of decision trees
• Overfitting
• Variants of decision trees (extended material)
Information theory background

• consider a problem in which you are using a code to communicate information to a receiver

• example: as bikes go past, you are communicating the manufacturer of each bike
Information theory background

• suppose there are only four types of bikes
• we could use the following code

<table>
<thead>
<tr>
<th>type</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trek</td>
<td>11</td>
</tr>
<tr>
<td>Specialized</td>
<td>10</td>
</tr>
<tr>
<td>Cervelo</td>
<td>01</td>
</tr>
<tr>
<td>Serrota</td>
<td>00</td>
</tr>
</tbody>
</table>

\[
\frac{1}{4} \times 2 + \frac{1}{4} \times 2 + \frac{1}{4} \times 2 + \frac{1}{4} \times 2 = 2
\]

• expected number of bits we have to communicate:
 • 2 bits/bike
Information theory background

• we can do better if the bike types aren’t equiprobable

<table>
<thead>
<tr>
<th>Type/probability</th>
<th># bits</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\text{Trek}) = 0.5$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$P(\text{Specialized}) = 0.25$</td>
<td>2</td>
<td>01</td>
</tr>
<tr>
<td>$P(\text{Cervelo}) = 0.125$</td>
<td>3</td>
<td>001</td>
</tr>
<tr>
<td>$P(\text{Serrota}) = 0.125$</td>
<td>3</td>
<td>000</td>
</tr>
</tbody>
</table>
Information theory background

<table>
<thead>
<tr>
<th>Type/probability</th>
<th># bits</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\text{Trek}) = 0.5$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$P(\text{Specialized}) = 0.25$</td>
<td>2</td>
<td>01</td>
</tr>
<tr>
<td>$P(\text{Cervelo}) = 0.125$</td>
<td>3</td>
<td>001</td>
</tr>
<tr>
<td>$P(\text{Serrota}) = 0.125$</td>
<td>3</td>
<td>000</td>
</tr>
</tbody>
</table>

- expected number of bits we have to communicate

$$0.5 \times 1 + 0.25 \times 2 + 0.125 \times 3 + 0.125 \times 3 = 1.75 < 2$$
Information theory background

<table>
<thead>
<tr>
<th>Type/probability</th>
<th># bits</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\text{Trek}) = 0.5$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$P(\text{Specialized}) = 0.25$</td>
<td>2</td>
<td>01</td>
</tr>
<tr>
<td>$P(\text{Cervelo}) = 0.125$</td>
<td>3</td>
<td>001</td>
</tr>
<tr>
<td>$P(\text{Serrota}) = 0.125$</td>
<td>3</td>
<td>000</td>
</tr>
</tbody>
</table>

$$0.5 \times 1 + 0.25 \times 2 + 0.125 \times 3 + 0.125 \times 3 = 1.75 < 2$$

$$= 0.5 \times \log_2 0.5 + 0.25 \times \log_2 0.25 + 0.125 \times \log_2 0.125 + 0.125 \times \log_2 0.125$$

$$= - \sum_{y \in \text{values}(Y)} P(y) \log_2 P(y)$$
Information theory background

\[- \sum_{y \in \text{values}(Y)} P(y) \log_2 P(y) \]

• optimal code uses \(-\log_2 P(y)\) bits for event with probability \(P(y)\)
Entropy

- entropy is a measure of uncertainty associated with a random variable
- defined as the expected number of bits required to communicate the value of the variable

\[
H(Y) = - \sum_{y \in \text{values}(Y)} P(y) \log_2 P(y)
\]
Conditional entropy

- **conditional entropy** (or equivocation) quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known.

- What’s the entropy of Y if we condition on some other variable X?

\[
H(Y | X) = \sum_{x \in \text{values}(X)} P(X = x)H(Y | X = x)
\]

- Where

\[
H(Y | X = x) = - \sum_{y \in \text{values}(Y)} P(Y = y | X = x) \log_2 P(Y = y | X = x)
\]

Similar as the expected value?

Similar as entropy
PlayTennis: training examples

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Example

• Let $X = \text{Outlook}$ and $Y = \text{PlayTennis}$

• Can you compute $H(Y|X)$?

\[
H(Y|X) = P(X = \text{Sunny})H(Y|X = \text{Sunny}) + P(X = \text{Overcast})H(Y|X = \text{Overcast}) + P(X = \text{Rain})H(Y|X = \text{Rain})
\]
Example

• Let X = Outlook and Y = PlayTennis

• Can you compute H(Y|X)?

\[
\begin{align*}
H(Y|X = Sunny) &= -\frac{2}{5} \log \frac{2}{5} - \frac{3}{5} \log \frac{3}{5}
\end{align*}
\]

\[
\begin{align*}
H(Y|X = Overcast) &= 0
\end{align*}
\]

\[
\begin{align*}
H(Y|X = Rain) &= -\frac{3}{5} \log \frac{3}{5} - \frac{2}{5} \log \frac{2}{5}
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>2/14</td>
<td>3/14</td>
</tr>
<tr>
<td>Overcast</td>
<td>4/14</td>
<td>0</td>
</tr>
<tr>
<td>Rain</td>
<td>3/14</td>
<td>2/14</td>
</tr>
</tbody>
</table>
Information gain (a.k.a. mutual information)

• choosing splits in ID3: select the split S that most reduces the conditional entropy of Y for training set D

$$\text{InfoGain}(D, S) = H_D(Y) - H_D(Y \mid S)$$

D indicates that we’re calculating probabilities using the specific sample D
Relations between the concepts

https://en.wikipedia.org/wiki/Mutual_information
PlayTennis: training examples

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Information gain example

• What’s the information gain of splitting on Humidity?

\[
\text{InfoGain}(D, \text{Humidity}) = H_D(Y) - H_D(Y \mid \text{Humidity})
\]

\[
\text{InfoGain}(D, S) = H_D(Y) - H_D(Y \mid S)
\]
Information gain example

\[H_D(Y) = - \frac{9}{14} \log_2 \left(\frac{9}{14} \right) - \frac{5}{14} \log_2 \left(\frac{5}{14} \right) = 0.940 \]

\[H(Y) = - \sum_{y \in \text{values}(Y)} P(y) \log_2 P(y) \]
Information gain example

\[H_D(Y \mid \text{Humidity}) = P(\text{Humidity}=\text{high})H_D(Y \mid \text{Humidity}=\text{high}) + P(\text{Humidity}=\text{normal})H_D(Y \mid \text{Humidity}=\text{normal}) \]

\[H(Y \mid X) = \sum_{x \in \text{values}(X)} P(X = x)H(Y \mid X = x) \]

\[H(Y \mid X = x) = - \sum_{y \in \text{values}(Y)} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x) \]
Information gain example

$$\text{InfoGain}(D, \text{Humidity}) = H_D(Y) - H_D(Y \mid \text{Humidity})$$

$$= 0.940 - \left[\frac{7}{14} \times (0.985) + \frac{7}{14} \times (0.592) \right]$$

$$= 0.151$$
Information gain example

- Is it better to split on Humidity or Wind?

\[
\begin{align*}
\text{Humidity} & : \\
& \quad \text{high} \\
& \quad \text{normal} \\
D: [3+, 4-] & \quad D: [6+, 1-] \\
\text{Wind} & : \\
& \quad \text{weak} \\
& \quad \text{strong} \\
D: [6+, 2-] & \quad D: [3+, 3-] \\
H_D(Y | \text{weak}) = 0.811 & \quad H_D(Y | \text{strong}) = 1.0 \\
\end{align*}
\]

\[
\begin{align*}
\text{InfoGain}(D, \text{Humidity}) &= 0.940 - \left[\frac{7}{14} (0.985) + \frac{7}{14} (0.592) \right] \\
&= 0.151 \\
\text{InfoGain}(D, \text{Wind}) &= 0.940 - \left[\frac{8}{14} (0.811) + \frac{6}{14} (1.0) \right] \\
&= 0.048
\end{align*}
\]
One limitation of information gain

• information gain is biased towards tests with many outcomes
• e.g. consider a feature that uniquely identifies each training instance
 • splitting on this feature would result in many branches, each of which is “pure” (has instances of only one class)
 • maximal information gain!
Gain ratio

• to address this limitation, C4.5 uses a splitting criterion called *gain ratio*

• gain ratio normalizes the information gain by the entropy of the split being considered

\[
\text{GainRatio}(D, S) = \frac{\text{InfoGain}(D, S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y \mid S)}{H_D(S)}
\]
Exercise

• Compute the following:

\[\text{GainRatio}(D, \text{Humidity}) = \]
\[\text{GainRatio}(D, \text{Wind}) = \]
\[\text{GainRatio}(D, \text{Outlook}) = \]
Step (3): Stopping criteria
Stopping criteria

• We should form a leaf when
 • all of the given subset of instances are of the same class
 • we’ve exhausted all of the candidate splits
Accuracy of Decision Tree
Definition of Accuracy and Error

• Given a set D of samples and a trained model M, the accuracy is the percentage of correctly labeled samples. That is,

$$Accuracy(D, M) = \frac{|\{M(x) = l_x \mid x \in D\}|}{|D|}$$

Where l_x is the true label of sample x and $M(x)$ gives the predicted label of x by M.

• Error is a dual concept of accuracy.

$$Error(D, M) = 1 - Accuracy(D, M)$$

But, what is D?
How can we assess the accuracy of a tree?

• Can we just calculate the fraction of *training* instances that are correctly classified?

• Consider a problem domain in which instances are assigned labels at random with $P(Y = t) = 0.5$
 • how accurate would a learned decision tree be on previously unseen instances?
 • Can never reach 1.0.

• how accurate would it be on its training set?
 • Can be arbitrarily close to, or reach, 1.0 if model can be very large.
How can we assess the accuracy of a tree?

• to get an unbiased estimate of a learned model’s accuracy, we must use a set of instances that are held-aside during learning
• this is called a *test set*
Overfitting
Overfitting

• consider error of model M over
 • training data: $\text{Error}(D_{training}, M)$
 • entire distribution of data: $\text{Error}(D_{true}, M)$

• model $M \in H$ overfits the training data if there is an alternative
 model $M' \in H$ such that

$$\text{Error}(D_{training}, M) < \text{Error}(D_{training}, M')$$

$$\text{Error}(D_{true}, M) > \text{Error}(D_{true}, M')$$

Perform better on training dataset
Perform worse on true distribution
Example 1: overfitting with noisy data

• suppose
 • the target concept is $Y = X_1 \land X_2$
 • there is noise in some feature values
 • we’re given the following training set

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>...</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>...</td>
<td>f</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>...</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>...</td>
<td>f</td>
</tr>
</tbody>
</table>
Example 1: overfitting with noisy data

A noisy data:

\[X_1 = t \]
\[X_2 = f \]
\[X_3 = t \]
\[X_4 = t \]
\[X_5 = f \]
\[Y = t \]
Example 1: overfitting with noisy data

- What is the accuracy?
 - \(\text{Accuracy}(D_{\text{training}}, M) = \frac{5}{6} \)
 - \(\text{Accuracy}(D_{\text{true}}, M) = 100\% \)
Example 1: overfitting with noisy data

• What is the accuracy?
 • Accuracy(D_{training},M) = 100%
 • Accuracy(D_{true},M) < 100%

$$Y = X_1 \land X_2$$
Example 1: overfitting with noisy data

Training set accuracy	True accuracy
\(M_1\)
\(X_1\)
\(\text{true tree}\)
\(X_2\)
\(X_3\)
\(T\)
\(F\)
5/6 | 100%
\(M_2\)
\(X_1\)
\(X_2\)
\(X_3\)
\(T\)
\(F\)
100% | < 100%

\(M_2\) is overfitting!
Example 2: overfitting with noise-free data

• suppose
 • the target concept is \(Y = X_1 \land X_2 \)
 • \(P(X_3 = t) = 0.5 \) for both classes
 • \(P(Y = t) = 0.66 \)
 • we’re given the following training set

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>(X_5)</th>
<th>...</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>...</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>...</td>
<td>f</td>
</tr>
</tbody>
</table>
Example 2: overfitting with noise-free data

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>...</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>...</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>...</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>...</td>
<td>f</td>
</tr>
</tbody>
</table>
Example 2: overfitting with noise-free data

- What is the accuracy?
 - Accuracy($D_{training}, M$) = 100%
 - Accuracy(D_{true}, M) = 50%

\[Y = X_1 \land X_2 \]

\[P(X_3 = t) = 0.5 \]
\[P(Y=t) = 0.66 \]

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>...</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>...</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>...</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>...</td>
<td>f</td>
</tr>
</tbody>
</table>
Example 2: overfitting with noise-free data

• What is the accuracy?
 • Accuracy($D_{training}, M$) = 60%
 • Accuracy(D_{true}, M) = 66%

\[
Y = X_1 \wedge X_2
\]

\[
P(X_3 = t) = 0.5
\]
\[
P(Y = t) = 0.66
\]
Example 2: overfitting with noise-free data

- because the training set is a limited sample, there might be (combinations of) features that are correlated with the target concept by chance

M_1 is overfitting!
Variant: Regression Trees
Regression trees

• in a regression tree, leaves have functions that predict numeric values instead of class labels

• the form of these functions depends on the method
 • CART uses constants
 • some methods use linear functions
Regression trees in CART

• CART does *least squares regression* which tries to minimize

\[
\sum_{i=1}^{\left| D \right|} (y^{(i)} - \hat{y}^{(i)})^2
\]

- target value for \(i^{th}\) training instance
- value predicted by tree for \(i^{th}\) training instance (average value of \(y\) for training instances reaching the leaf)

\[
= \sum_{L \in \text{leaves}} \sum_{i \in L} (y^{(i)} - \hat{y}^{(i)})^2
\]

• at each internal node, CART chooses the split that most reduces this quantity
Variant: Probability estimation trees
Probability estimation trees

- in a PE tree, leaves estimate the probability of each class
- could simply use training instances at a leaf to estimate probabilities, but ...
- *smoothing* is used to make estimates less extreme (we’ll revisit this topic when we cover Bayes nets)
Variant: m-of-n splits
m-of-n splits

- a few DT algorithms have used m-of-n splits [Murphy & Pazzani ‘91]
- each split is constructed using a heuristic search process
- this can result in smaller, easier to comprehend trees

Test is satisfied if 5 of 10 conditions are true

Tree for exchange rate prediction [Craven & Shavlik, 1997]
Searching for m-of-n splits

• m-of-n splits are found via a hill-climbing search
• initial state: best 1-of-1 (ordinary) binary split
• evaluation function: information gain
• operators:
 • m-of-n => m-of-(n+1)
 • 1 of \(\{ X_1=t, X_3=f \} \) => 1 of \(\{ X_1=t, X_3=f, X_7=t \} \)
 • m-of-n => (m+1)-of-(n+1)
 • 1 of \(\{ X_1=t, X_3=f \} \) => 2 of \(\{ X_1=t, X_3=f, X_7=t \} \)
Variant: Lookahead
Lookahead

• most DT learning methods use a hill-climbing search
• a limitation of this approach is myopia: an important feature may not appear to be informative until used in conjunction with other features
• can potentially alleviate this limitation by using a lookahead search [Norton ‘89; Murphy & Salzberg ‘95]
• empirically, often doesn’t improve accuracy or tree size
Choosing best split in ordinary DT learning

• OrdinaryFindBestSplit (set of training instances D, set of candidate splits C)

\[
\begin{align*}
\text{maxgain} &= -\infty \\
\text{for each split } S \text{ in } C \\
\quad \text{gain} &= \text{InfoGain}(D, S) \\
 \text{if gain} &> \text{maxgain} \\
 \quad \text{maxgain} &= \text{gain} \\
 \quad S_{\text{best}} &= S \\
\text{return } S_{\text{best}}
\end{align*}
\]
Choosing best split with lookahead (part 1)

- LookupaheadFindBestSplit (set of training instances D, set of candidate splits C)

 $maxgain = -\infty$

 for each split S in C

 $gain = \text{EvaluateSplit}(D, C, S)$

 if $gain > maxgain$

 $maxgain = gain$

 $S_{best} = S$

 return S_{best}
Choosing best split with lookahead (part 2)

\[\text{EvaluateSplit}(D, C, S) \]

if a split on \(S \) separates instances by class (i.e. \(H_D(Y \mid S) = 0 \))

// no need to split further

return \(H_D(Y) - H_D(Y \mid S) \)

else

for each outcome \(k \) of \(S \)

// see what the splits at the next level would be

\(D_k = \text{subset of instances that have outcome } k \)

\(S_k = \text{OrdinaryFindBestSplit}(D_k, C - S) \)

// return information gain that would result from this 2-level subtree

return \(H_D(Y) - \left(\sum_k \frac{|D_k|}{|D|} H_{D_k}(Y \mid S = k, S_k) \right) \)
Calculating information gain with lookahead

• Suppose that when considering Humidity as a split, we find that Wind and Temperature are the best features to split on at the next level.

• We can assess value of choosing Humidity as our split by

\[
H_D(Y) - \left(\frac{14}{23} H_D(Y \mid \text{Humidity = high, Wind}) + \frac{9}{23} H_D(Y \mid \text{Humidity = low, Temperature}) \right)
\]
Calculating information gain with lookahead

- Using the tree from the previous slide:

\[
\frac{14}{23} H_D(Y \mid \text{Humidity = high, Wind}) + \frac{9}{23} H_D(Y \mid \text{Humidity = low, Temperature})
\]

\[= \frac{5}{23} H_D(Y \mid \text{Humidity = high, Wind = strong}) + \]

\[+ \frac{9}{23} H_D(Y \mid \text{Humidity = high, Wind = weak}) + \]

\[+ \frac{4}{23} H_D(Y \mid \text{Humidity = low, Temperature = high}) + \]

\[+ \frac{5}{23} H_D(Y \mid \text{Humidity = low, Temperature = low}) \]

\[
H_D(Y \mid \text{Humidity = high, Wind = strong}) = - \frac{2}{5} \log \left(\frac{2}{5} \right) - \frac{3}{5} \log \left(\frac{3}{5} \right)
\]
Comments on decision tree learning

• widely used approach
• many variations
• provides humanly comprehensible models when trees not too big
• insensitive to monotone transformations of numeric features
• standard methods learn axis-parallel hypotheses*
• standard methods not suited to on-line setting*
• usually not among most accurate learning methods

* although variants exist that are exceptions to this