Principles of Computer Game
Design and Implementation

Lecture 16

We already learned

* Collision detection
— two approaches (overlap test, intersection test)
— Low-level, mid-level, and high-level view

* Collision response

— Newtonian mechanics

Outline for today

* An application of Newtonian dynamics in
targeting
* Collision recipe

— Bouncing problem

Physics: Prediction

* Consider the targeting problem: a gun takes
aim at a target
— Given: S — distance to the target
— Compute the bullet velocity vector

* Incomplete information

Targeting Problem (1)

* Consider horizontal and vertical components
of the velocity vector V

* Assume that
— the horizontal component is given and
— it does not change (no wind / drag)

* Flying time is S

Targeting Problem (2)

* Vertically, the motion is up and down

Vi (t) =V, —gt
* Assume that
— the gun and target are levelled
* At the highest point Vu(t) =0
— time to the highest point is half the flying time

Targeting Problem (3)

* Thus, 0=V, — g(tﬂying)/2

/

HelloAiming

float distance = 100f;
bullet.setLocalTranslation(0, 0, 0);
target.setLocalTranslation(distance, 0, 0);

float vx = 20f;é-/””—__—“\\\\\\\\\X{ompomynof

velocity new Vector3f(vx,vy,0); Horizontal” speed.

pubic void simpleUpdate() {
if(bullet.getLocalTranslation().getY() >=
velocity = velocity.add(gravity.mult (tpf)
bullet.move(velocity.mult(tpf));

}

0) {
) 7

Run it with different vx!!

Euler Steps: Advantages and
Disadvantages

 Work well when motion is slow (small
simulation steps) and forces are well-defined

— F, a and V remain same in the time interval
 Does not work well when
— Simulation steps are large

— Approximation errors accumulate

— F, a and V change rapidly over time

Inaccurate for serious applications (e.g. flying a real rocket)
Widely used in computer games for its simplicity

If Accuracy Matters

* Use other integration methods
— Typically, much more computationally demanding

* Cheat

— E.g. in our aiming example, if the bullet speed is
high, consider it travel along a straight line

— Adjust its position if necessary

Computer Science Approach:
Iterations

Shoot at will

See where it land

If undershot, increase power
If overshot, decrease power

But what will the user think?

Collision Resolution

Colliding objects change the trajectory
 Two main approaches

— Impact
* Instantaneous change of velocity as a result of collision
— Contact
* Gradual change of velocity and position
ve &
?
T - rxx

N
7

Time line : .
Time line 12

Penetration

* Both Impact and Contact may 3
lead to penetration of one entity v vt

o another R

— Calculate the exact time of collision
 Complex computations
* Collision may never be seen Q ’ 6 6

— Treat penetration as part of O

collision

13

Collision Detection

CollisionResults results =
new CollisionResults();

boxes.collideWith(ball.
getWorldBound(), results);

1f (results.size() > 0) {

Simple Impact-Based Response

1
te &
R

¥

protected void simpleUpdate() {

if(results.size() > 0) {
velocity.setY(-velocity.getY());

}

Problems:
1. Assumes floor is horizontal
2. Penetration is not fully taken into account

15

Penetration Can Cause Glitches

if(results.size() > 0) {
velocity.setY(-velocity.getY());

One of the jME2
examples handles

’ collisions this way.... ©

Vv

T3k

16

Better Solution

if(results.size() > 0) {
velocity.setY(FastMath.abs(velocity.get¥Y()));

é
K

i

Time line %_%

Vv

17

Ball-Plain Collision

if(results.size() > 0) {
velocity.setY(
FastMath.abs(velocity.getY()));

}
e Still works

 So, what’s the difference?

> 18

Ball-Plain Collision Recipe

* Split the ball velocity vector into two

components
¢ V=VN+V||

—V, = (V-N)N
—V, =V-Vy

N\

\

AV

Before collision

V’ — V'N+V'||
—V’ = abs(V+N)N
-V, =V

After collision

19

Energy Loss

* When entities collide some energy is lost
* Simple model:

Energy loss

_ V', = Xabs(V-N)N
-V = V)

After collision /

No friction

20

Recall: Quaternion from 3 Vectors

e g.fromAngleAxis(angle, axis) : (x,y,z) -> (x1,y1,z1)

* g.fromAxes(x1l,yl,zl) —
“jnverse”

HelloBounce (1)

Just to set up the scenery

protected Geometry boxFromNormal (String name,
Vector3f n) {
Box b = new Box(10f, 1f, 10f);
Geometry bg = new Geometry(name, b);
Material mat = new Material..; bg.setMaterial(mat);

Quaternion g = new Quaternion();
q.fromAxes(n.cross(Vector3f.UNIT Z), n,

Vector3f.UNIT 7);
bg.setLocalRotation(q);
return bg;

Recall: X=Yx2Z

HelloBounce (2)

if(..) {
float projval = velocity.dot(floor2Normal);
Vector3f projection = floor2Normal.mult
(projval);
Vector3f parall = velocity.subtract
(projection);
velocity = parall.add(floor2Normal.mult
(energyLoss*FastMath.abs(projval)));

23

