Principles of Computer Game Design and Implementation

Lecture 19
Game Artificial Intelligence

In computer games, AI refers to a collection of techniques that control the computer player.

- **AI is anything that contributes to the perceived intelligence of an entity, regardless of what’s under the hood.**
Outline for today

• Introduction
• Sense-Think-Act Cycle:
 – Sensing
Some History

- Initially, there was no computer player in games (Pong, Space Wars, Tetris)
- Early examples are not very smart
 - Pac-Man ghosts (chaise mode):
 - Plan just one step ahead
 - Never reverse the direction of travel
 - Certain tiles enforce certain behaviour
 - Target tile depends on the ghost personality
 - Move where the player is
 - Move where the player will be
Requirements

• Be intelligent but **purposely** flawed
• Have no **unintended** weaknesses
• Perform within CPU and memory constraints
 – Cheat! (but players don’t like it. If they notice.)
• Be configurable by game designers /player
• Be **visible**
 – Perception window can be very small
Be Visible

• Make sure player knows what agent is doing
 – *Patrolling agent speaks on the radio*
 – *Changes* in behaviour are easy to spot

• Eliminate invisible AI activity
 – “Level of detail”: if player sees, show activity, else don’t do it.
Example: 100% Optimisation

- That’s what we perceive
Example: 100% Optimisation

• What happens:
 – Soldiers are spawned by the control system *when needed*
 – Helps with the CPU cycles
Traditional AI

Science and Engineering

• the *science* of understanding intelligent entities - of developing theories which attempt to explain and predict the nature of such entities;

• the *engineering* of intelligent entities.
Four Views of AI

- **Systems that think like humans**
 - cognitive science, expert systems

- **Systems that act like humans**
 - The Turing Test, chess programs

- **Systems that think rationally**
 - Approaches based on logic and mathematics

- **Systems that act rationally**
 - Contemporary agent based approaches

It’s all about **substance**!
Game AI

- Biased towards engineering: developing algorithms that appear to behave intelligently
 - human or animal like

- Sometimes these two approaches do overlap
 - But not necessarily

It’s all about appearance!
Approaches to Game AI

• “Proper”
 – FSMs, planning, path finding, collision avoidance, expert systems, fuzzy logic...

• “Ad-Hoc”
 – Hacks
 • Animation can show more intelligence than algorithm
 – Heuristics
 • Choose most constraint option
 • Do most difficult thing first
 • Try the most promising thing first
Intelligent Entities

It is convenient to distinguish

• Game agents
 – autonomous entities that observe and act upon an environment.
 • Game characters

• Virtual Player
 – performs the same operations as the human player.
 • Chess
Agents and Virtual Player

• Agents, no virtual player
 – Shooters, racing, ...

• Virtual player, no agents
 – Chess, ...

• Both
 – Strategy games, team sport games, ...
Agents

• Act as
 – enemies, allies, neutral characters

• Constantly go through a
 – Sense – Think – Act cycle
 • Sometimes can learn new behaviours

• Example: first-person shooter enemies, other car drivers, units in strategies
Sense-Think-Act Cycle: Sensing

• Agent can have access to **perfect** information of the game world
 – May be expensive/difficult to tease out useful info

• Game World Information
 – Complete terrain layout
 – Location and state of every game object
 – Location and state of player

• But isn’t this cheating???
Sensing: Enforcing Limitations

• Human limitations?
• Limitations such as
 – Not knowing about unexplored areas
 – Not seeing through walls
 – Not knowing location or state of player
• Can only know about things seen, heard, or told about
• Must create a sensing model
Sensing: Human Vision Model for Agents

• Get a list of all objects or agents; for each:
 1. Is it within the viewing distance of the agent?
 • How far can the agent see?
 • What does the code look like?
 2. Is it within the viewing angle of the agent?
 • What is the agent’s viewing angle?
 • What does the code look like?
 3. Is it unobscured by the environment?
 • Most expensive test, so it is purposely last
 • What does the code look like?
Partial Visibility

• Check for bounding body visibility
 – Expensive

• React to player **motion**
 – Corresponds nicely to the human perception
Sensing: Human Hearing Model

- Humans can hear sounds
 - Can recognize sounds
 - Knows what emits each sound
 - Can sense volume
 - Indicates distance of sound
 - Can sense pitch
 - Sounds muffled through walls have more bass
 - Can sense location
 - Where sound is coming from
Sensing: Modeling Hearing Efficiently

• Event-based approach
 – When sound is emitted, it alerts interested agents

• Use distance and zones to determine how far sound can travel
Sensing: Communication

• Agents might talk amongst themselves!
 – Guards might alert other guards
 – Agents witness player location and spread the word

• Model sensed knowledge through communication
 – Event-driven when agents within vicinity of each other
Sensing: Reaction Times

• Agents shouldn’t see, hear, communicate instantaneously
• Players notice!
• Build in artificial reaction times
 – Vision: ¼ to ½ second
 – Hearing: ¼ to ½ second
 – Communication: > 2 seconds