
Principles of Computer Game
Design and Implementation

Lecture 21

Outline for today

• Robocode: our second continuous assignment

2

Robocode

• Educational game with the aim

3

to develop a
robot battle
tank to battle
against other
tanks.

Every tank is
controlled by
Java (or C#)
code

Anatomy of a Robot

4

• Every tank is a vehicle equipped with
– A rotating gun
– A rotating radar

• The vehicle, gun and radar can
rotate independently
– Initially, all aligned
• May not be a good idea to decouple

the gun and radar (at first at least)

Battle Field

• Rectangular arena
– getBattleFieldHeight()
– getBattleFieldWidth()
– getX()
– getY()

• Size varies between
400x400 and 5000x5000

5

y

(0,0)

Game Rules
• Every bot has some energy (100 at start)
– When energy is 0 the bot is disabled
– When a disabled bot is hit it is destroyed

• Shooting costs energy
– New energy = energy – bullet firepower
– Bullet firepower is a (double) number between 0.1 and 3

• Hitting an enemy bot with a bullet gives energy
• Being hit takes energy
• Ramming into a wall takes energy
– For AdvancedRobot only

6

Time and Space

• Time is measured in ticks
– 1 tick = 1 turn
• Every bot executes commands for 1 tick
• If action is unfinished, it is halted

• Distance is measured in pixels
• Angles are measured in degrees

7

Directions

• Heading
– The direction of

bot movement
• Bearing
– Direction relative

to heading

8

1.4 The Environment 15

(a) Robocode (b) Conventional mathe-
matics

Figure 1.2: Shows the di�erence between the orientation of angles as they
are used in Robocode and conventional mathematics.

1.4 The Environment

This section will explain the most important parts of the Robocode environ-
ment. It is important to understand the environment in which the robots
act, in order to implement a working robot.

Let us start by explaining how Robocode handles time and distance.

Time is measured in ticks. At the start of a game the tick count is set
to 0 and all robots are told to execute their commands. After a set
time interval all robots are halted and the tick count is incremented.
If a robot has not executed all its commands when this happens, the
commands are simply discarded. This then repeats itself until the game
ends. One tick = one frame = 1 turn. When a new round begins the
tick counter is reset.

Distance is measured in pixels. The smallest possible battlefield in Robocode
is 400� 400 pixels and the largest is 5000� 5000 pixels.

1.4.1 Main Loop

To control the game, Robocode has a built in loop, called the Battle Manager,
see Figure 1.3. The Battle Manager basically works as a program that uses
the di�erent robots as plug-ins. Every robot has its own thread, which has
its own event queue. Events are generated whenever something happens over
which we have no direct control. This could be when our robot collides with
a wall, an enemy is scanned with the radar, etc. These events are put in the

For blue robot:
Heading = 45°
Bearing to the red robot ≈ 340°

blue

red

Bot Motion

• A robot
– Accelerates at the rate of 1 pixel/turn/turn
– Decelerates at the rate of 2 pixels/turn/turn

– Velocity cannot exceed 8 pixels / turn

– Automatically accelerates/decelerates based on
the distance to move

9

V = a t

Robot, Gun and Radar Rotation Limits

• Max rate of robot rotation
– (10 - 0.75 * abs(velocity)) deg / turn
– The faster you're moving, the slower you turn

• Max rate of gun rotation
– 20 deg / turn

• Max rate of radar rotation
– 45 deg / turn

10

Bullets
• Damage:
– 4 * firepower, if firepower ≤ 1
– 4 * firepower + 2 * (firepower – 1), if firepower > 1

• Velocity:
– 20 - 3 * firepower

• Power returned on hit:
– 3 * firepower

• GunHeat generated:
– 1 + firepower / 5 You cannot fire if gunHeat > 0
– The gun cools down at the rate of 0.1 per turn

11

0.1 < firepower ≤ 3

Processing Loop
• Battle view is (re)painted.
• All robots execute their code until they take action (and

then paused).
• Time is updated (time = time + 1).
• All bullets move and check for collisions. This includes

firing bullets.
• All robots move (gun, radar, heading, acceleration,

velocity, distance, in that order).
• All robots perform scans (and collect team messages).
• All robots are resumed to take new action.
• Each robot processes its event queue.

12

public class myRobot extends …

• A Robocode bot extends one of
– Robot
– AdvancedRobot
– JuniorRobot
• Not in the labs
• For those who are not used to “getters”

– this.getEnergyLevel()

• Please do not use

13

Default Robot (1)

14

package comp222;
import robocode.*;
public class XiaoweiH extends Robot
{

public void run() {
while(true) {

ahead(100);turnGunRight(360);
back(100);turnGunRight(360);

}
}

…

Default Robot (2)

15

…
public void onScannedRobot

(ScannedRobotEvent e) {
fire(1);

}
public void onHitByBullet

(HitByBulletEvent e) {
back(10);

}
public void onHitWall(HitWallEvent e) {

back(20);
}

}

Robot vs AdvancedRobot (1)
Blocking method
inherited from Robot

Non-blocking methods
inherited from AdvancedRobot

turnRight() setTurnRight()
turnLeft() setTurnLeft()
turnGunRight() setTurnGunRight()
turnGunLeft() setTurnGunLeft()
turnRadarRight() setTurnRadarRight()
turnRadarLeft() setTurnRadarLeft()
ahead() setAhead()
back() setback()

16

Robot vs AdvancedRobot (2)

17

• Non-blocking calls return immediately
– One can do more than one action per turn
– Call execute() to run pending actions

• If an advanced robot rams into a wall, it looses
– Velocity / 2 + 1 energy

More Info

• Robocode web page
– http://robocode.sourceforge.net/

• Robowiki
– http://robowiki.net/

• Robocode API
– http://robocode.sourceforge.net/docs/robocode/

18

http://robocode.sourceforge.net/
http://robowiki.net/
http://robocode.sourceforge.net/docs/robocode/

Assignment 2
• Code (30%)
• Documentation (40%)
• Tournament (30%)

You need to implement one of behaviour models
considered in the module
• FSM
• Behaviour trees
• Decision trees
• ….

19

Documentation (40%)

• Describe the behaviour model of
your choice

• Design the bot using this model
– E.g. for FSMs, draw states and

transitions
• Describe your implementation

20

(10%)

(20%)

(10%)

Implementation (30%)

• Providing response to battle events 10%
– onScannedRobot(),…

• Following the design 10%
• Clarity and style of code 10%

21

Naming Convention
• Package name: comp222
• Robot name: any unique name
– FirstnameLastname

• E.g. XiaoweiHuang
– Astudentnumber

• E.g. if the student number is 200812345
• A200812345 (can compromise the ID)

– Ayourfullbirthday
– …

• Clearly identify authorship in
the comments!

22

Tournament (30%)

• Randomly split into groups of around 10 bots
each

• Winners will progress into the next round
• Details to be finalised

23

Use of Sources

24

Crime Does Not Pay!

• When the module was run for the first time,
some students submitted code downloaded
from the Internet to improve their chances in
the tournament

• This is NOT a good idea, and here’s why…

25

Case Study (1)

• Student A cheated and got 30% in the
tournament (initially)
– Got caught and had Tournament marks stripped
– Did not understand the code and got only 5% for

the design
– The implementation did not match the design ->

poor description, low mark

Total final mark: 35%

26

Case Study (2)

• Student B submitted 40 lines of code
– Code matched the design
– Decent performance in the tournament
– Good explanation of the design
– Good description of the implementation

Total final mark: 90%

27

