Principles of Computer Game Design and Implementation

Lecture 22

Credits

- Heavily based on
 - I. Millington and J.
 Funge "Artificial Intelligence for Games", Elsevier, 2009.
 - J. Ahlquist, J. Novak
 "Game Artificial
 Intelligence", Thomson,
 2008

ARTIFICIAL INTELLIGENCE FOR GAMES SECOND EDITION

Techniques to Go Through

- Decision Tree
- Finite State Machine
- Behaviour Tree
- Planning
- Steering Behaviour
- Pathfinding (1,2)

Outline for today

• Decision tree

A Very Rough Structure of Game Al

In reality, there is no clear cut.

Major Approaches

- Reactive Al
 - Computer player reacts to human player actions
 - Event-driven
 - Pull-based
- Goal-driven Al
 - Pursuing goals
 - Hierarchy of goals
- Combinations and variations

Decision Trees and Rule-Based Systems

- Many game situations can be described as *if-then-else* cases
 - If see enemy then shoot
 - If (animal is enemy or neutral) and animal is not healthy then eat it
 - If animal sings and dances then it's friendly
- Decision trees
- Rule-based (production/expert) systems

Acting on knowledge

Classification

Decision Trees

- Simplest decision making technique
- Easy to implement and understand
- Mostly reactive Al
- Fast execution
- Can be combined with other techniques
- Can be *learned* (using machine learning techniques)

Example

Logical Connectives

• A and B

• A **or** B

Easy to Implement

Hard-coded knowledge may not be a good idea

Why: Maintainability

- Why hard-coded AI is not a good idea?
 - Maintainability
 - Add an extra check "is enemy a tank?"

Why: Tree Balancing

 The longer the branch the longer it takes to go along it

Е

D

F

G

В

С

Α;

Н

Manageable Implementation

- Special languages
 - Overkill
 - Can be done with AI scripting approaches
- A library of (C++ / Java) classes for attributes, tests and actions
 - Somewhat similar to scene graph libraries

Extensions: Split on Other Values

• Yes/No is not an answer

- Decide on other attributes. For example,

Possible data types:

- Boolean
- Enumeration
- 3D Vector (vector length within range, vector direction is given,...)

•

Variations: Random Decisions

• Completely predictable behaviour is boring

 Randomness breaks the pattern

Coin can be biased (player psychology)

Sticking to Choice

- Marine behaviour
- Sense Think Act cycle navigates the decision tree every time

Random choice every iteration will make the marine freeze

Stick to choice (for a while)

Learning Decision Trees

- Aims:
 - Better gameplay
 - Cheaper Al
 - Adaptive Al

- Not often used by game developers
 - Reproducibility and quality control
 - Increased run time
 - Can be faked

Alternatives to ML

• Pre-programmed levels of difficulty

Switch between behaviours

- Incremental introduction of new game entities

 "Uncover" cleverness of AI
- Tweaking parameters at run-time
 - Reduce the number of mistakes
 - Improve aim
 - Limited form of machine learning (stats)
 - Learning user's habits (attack from right etc.)

Faking vs Learning

- Learning (potentially) gives more options but
- With faking the AI code remains unchanged and can be tested debugged

http://heli.stanford.edu/

• On the other hand, learning gives stunning results in traditional AI (not game AI).

When to Learn

- Online learning
 - While playing
 - Input from players
 - Aim: adaptive behaviour
- Offline learning
 - Before the product is released
 - Input from designers
 - Aim: finding best behaviours

Basic Techniques

- Analysing examples
 - About 75% are used to learn
 - The rest (25%) are used to test
- Reinforcement learning
 - Rewards and punishments for actions

Decision Trees from Examples

- Given: Attributes, Decisions, Examples
- Required: Construct a tree

Health	Cover	Ammo	Decision
Healthy	In Cover	With Ammo	Attack
Hurt	In Cover	With Ammo	Attack
Healthy	In Cover	Empty	Defend
Hurt	In Cover	Empty	Defend
Hurt	Exposed	With Ammo	Defend

Example: marine behaviour

Decision Tree Learning Algorithm

Can be a majority

function DTL(*examples*, *attributes*, *default*) returns a decision tree

if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return MODE(examples) else

 $best \leftarrow CHOOSE-ATTRIBUTE(attributes, examples)$ $tree \leftarrow a \text{ new decision tree with root test } best$ $for each value v_i \text{ of } best do$ $examples_i \leftarrow \{elements \text{ of } examples \text{ with } best = v_i\}$

 $subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))$

add a branch to tree with label v_i and subtree subtree

return tree

From S. Russel, P. Norvig "Artificial Intelligence: A modern approach", Prentice Hall

Example

Attributes order: the column (random) order

Different Order of Attributes

Attributes	order:	Ammo,	Cover
------------	--------	-------	-------

Health	Cover	Ammo	Decision
Healthy	In Cover	With Ammo	Attack
Hurt	In Cover	With Ammo	Attack
Healthy	In Cover	Empty	Defend
Hurt	In Cover	Empty	Defend
Hurt	Exposed	With Ammo	Defend

Two Learnt Trees

Attributes order: the column (random) order

Attributes order: Ammo, Cover

The Order of Attributes Matters

- Pick one best splits the cases
- Bad choice may lead to *overfitting*: decision tree can handle *given* examples but not *generalise* from them
- First, split on the attribute that give biggest *Information Gain*
 - Information theory (Shannon, Weaver, 1949)
 - Numerical value of attribute based on statistics

Information Entropy

For a set of examples *S* let

- *n_p* be the number of examples with a *positive* outcome (e.g. Attack)
- *n_n* be the number of examples with a *negative* outcome (e.g. Defend)

Then, the entropy (a measure of uncertainty) for this set is

Total number of examples

$$E_{s} = -\frac{n_{p}}{n_{p} + n_{n}}\log_{2}\left(\frac{n_{p}}{n_{p} + n_{n}}\right) - \frac{n_{n}}{n_{p} + n_{n}}\log_{2}\left(\frac{n_{n}}{n_{p} + n_{n}}\right)$$

Information Gain

Every attribute A splits the set of examples S into two subsets

- S_A , for which the value of A is *true* - Compute the entropy E_{S_A} for S_A
- S_{\sim_A} , for which the value of A is false

- Compute the entropy E_{S_A} for $S_{\sim A}$

Number of elements in S-A

$$G_{A} = E_{S} - \frac{|S_{A}|}{|S|} E_{S_{A}} - \frac{|S_{A}|}{|S|} E_{S_{A}}$$

ID3

Pick the attribute with the highest information gain

$$G_{health} = 0.02$$

$$G_{cover} = 0.171$$

$$G_{ammo} = 0.420$$

Health	Cover	Ammo	Decision
Healthy	In Cover	With Ammo	Attack
Hurt	In Cover	With Ammo	Attack
Healthy	In Cover	Empty	Defend
Hurt	In Cover	Empty	Defend
Hurt	Exposed	With Ammo	Defend

Best choice

Learning with ID3

Health	Cover	Ammo	Decision
Healthy	In Cover	With Ammo	Attack
Hurt	In Cover	With Ammo	Attack
Healthy	In Cover	Empty	Defend
Hurt	In Cover	Empty	Defend
Hurt	Exposed	With Ammo	Defend

Attributes order: Ammo, Cover

Best outcome

Dealing with Noise

- Data often contains "noise"
 - E.g., human player decides to attack regardless of not having any ammo
- The learnt decision tree will take *irrelevant* attributes into account
 - E.g. in our example, Health was irrelevant
- Pruning techniques: eliminate splitting on statistically insignificant attributes

Black & White

- Most prominent example where decision trees were learnt is Black & White.
 - Creature can be trained by users
 - If the creature behaviour is "bad", hard to retrain
 - Very positive initial reception
 - Some critics reconsidered their opinion

Decision Trees: Summary

- Advantages:
 - Simple, compact representation
 - Easy to create and understand
 - Decision trees can be learned
- Disadvantages:
 - Slightly more coding than other techniques (FSMs)
 - Learnt trees may contain errors

Expert (Rule-Based) Systems in Games

- Rule-based knowledge representation
 - Set of rules
 - Facts in working memory

Chaining

- Forward chaining
 - Game actions cause changes to the working memory
 - AI agent acts on the derived knowledge
 - Reactive Al
- Backward chaining
 - Pursue goals
 - Goal-driven Al
 - Other methods are more common

Example: Age of Kings

(defrule(unit-type-count Condition villager > 0)=>(chat-to-all "I just made my first rule!!!!!" Action (disable-self);)

http://aok.heavengames.com/cgi-bin/aokcgi/display.cgi?action=ct&f=26,29,,30

Larger Rule

(defrule(building-type-count-total house > 0) (building-type-count-total mill == 0) (resource-found food) (can-build mill)=>(build mill))

Rules are commonly used in strategy game AI