
Principles of Computer Game
Design and Implementation

Lecture 22

Credits

• Heavily based on
– I. Millington and J.

Funge “Artificial
Intelligence for Games”,
Elsevier, 2009.

– J. Ahlquist, J. Novak
“Game Artificial
Intelligence”, Thomson,
2008

2

Techniques to Go Through

• Decision Tree
• Finite State Machine
• Behaviour Tree
• Planning
• Steering Behaviour
• Pathfinding (1,2)

3

Outline for today

• Decision tree

4

A Very Rough Structure of Game AI

5In reality, there is no clear cut.

Strategic/tactical
decisions

Implementing
plans

Breaking down

Major Approaches

• Reactive AI
– Computer player reacts to human player actions
• Event-driven
• Pull-based

• Goal-driven AI
– Pursuing goals
• Hierarchy of goals

• Combinations and variations

6

Decision Trees and Rule-Based Systems

• Many game situations can be
described as if-then-else cases
– If see enemy then shoot
– If (animal is enemy or neutral) and

animal is not healthy then eat it
– If animal sings and dances then it’s

friendly

• Decision trees
• Rule-based (production/expert)

systems

Acting on
knowledge

Classification

7

Decision Trees

• Simplest decision making technique
• Easy to implement and understand
• Mostly reactive AI
• Fast execution
• Can be combined with other

techniques
• Can be learned (using machine

learning techniques)
8

Sense

Think

Act

Example

Soldier decision making
• Based on perception

296 Chapter 5 Decision Making

Is enemy visible?

Is enemy <10 m away?

Yes

Yes

Yes

Is enemy audible?

YesNo

No

No

Creep

Attack

Attack

Move

Is enemy
on flank?

Figure 5.3 A decision tree

Each choice is made based on the character’s knowledge. Because decision trees are often used
as simple and fast decision mechanisms, characters usually refer directly to the global game state
rather than have a representation of what they personally know.

The algorithm continues along the tree,making choices at each decision node until the decision
process has no more decisions to consider. At each leaf of the tree an action is attached. When the
decision algorithm arrives at an action, that action is carried out immediately.

Most decision treenodes make very simple decisions, typically with only two possible
responses. In Figure 5.3 the decisions relate to the position of an enemy.

Notice that one action can be placed at the end of multiple branches. In Figure 5.3 the character
will choose to attack unless it can’t see the enemy or is flanked. The attack action is present at two
leaves.

Figure 5.4 shows the same decision tree with a decision having been made. The path taken by
the algorithm is highlighted, showing the arrival at a single action, which may then be executed
by the character.

Decisions

Decisions in a tree are simple. They typically check a single value and don’t contain any Boolean
logic (i.e., they don’t join tests together with AND or OR).

Depending on the implementation and the data types of the values stored in the character’s
knowledge, different kinds of tests may be possible. A representative set is given in the following
table, based on a game engine we’ve worked on:

9

Attribute test

Action / Decision /
Classification

Logical Connectives

• A and B

• A or B

298 Chapter 5 Decision Making

Yes

Yes

If A AND B then action 1, otherwise action 2

No

No

A

B

2

2

1

Yes

Yes

If A OR B then action 1, otherwise action 2

No

No

A

B

1

2

1

Figure 5.5 Trees representing AND and OR

To OR two decisions together, we also use the decisions in series, but with the two actions
swapped over from the AND example above. The second part of Figure 5.5 illustrates this. If either
test returns true, then action 1 is carried out. Only if neither test passes is action 2 run. This tree
has the logic “if A OR B, then carry out action 1, otherwise carry out action 2.”

This ability for simple decision trees to build up any logical combination of tests is used in
other decision making systems. We’ll see it again in the Rete algorithm in Section 5.8 on rule-based
systems.

Decision Complexity

Because decisions are built into a tree, the number of decisions that need to be considered is
usually much smaller than the number of decisions in the tree. Figure 5.6 shows a decision tree
with 15 different decisions and 16 possible actions. After the algorithm is run, we see that only
four decisions are ever considered.

Decision trees are relatively simple to build and can be built in stages. A simple tree can be
implemented initially, and then as the AI is tested in the game, additional decisions can be added
to trap special cases or add new behaviors.

Branching

In the examples so far, and in most of the rest of the chapter, decisions will choose between two
options. This is called a binary decision tree. There is no reason why you can’t build your decision

298 Chapter 5 Decision Making

Yes

Yes

If A AND B then action 1, otherwise action 2

No

No

A

B

2

2

1

Yes

Yes

If A OR B then action 1, otherwise action 2

No

No

A

B

1

2

1

Figure 5.5 Trees representing AND and OR

To OR two decisions together, we also use the decisions in series, but with the two actions
swapped over from the AND example above. The second part of Figure 5.5 illustrates this. If either
test returns true, then action 1 is carried out. Only if neither test passes is action 2 run. This tree
has the logic “if A OR B, then carry out action 1, otherwise carry out action 2.”

This ability for simple decision trees to build up any logical combination of tests is used in
other decision making systems. We’ll see it again in the Rete algorithm in Section 5.8 on rule-based
systems.

Decision Complexity

Because decisions are built into a tree, the number of decisions that need to be considered is
usually much smaller than the number of decisions in the tree. Figure 5.6 shows a decision tree
with 15 different decisions and 16 possible actions. After the algorithm is run, we see that only
four decisions are ever considered.

Decision trees are relatively simple to build and can be built in stages. A simple tree can be
implemented initially, and then as the AI is tested in the game, additional decisions can be added
to trap special cases or add new behaviors.

Branching

In the examples so far, and in most of the rest of the chapter, decisions will choose between two
options. This is called a binary decision tree. There is no reason why you can’t build your decision

10

Easy to Implement
if(enemy.isVisible()) {
if(distance(player, enemy) < 10){
attack();

}
else{
if(enemy.isOnFlank()){
move();

}
else{
attack();

}
}

}
else{ … … …

296 Chapter 5 Decision Making

Is enemy visible?

Is enemy <10 m away?

Yes

Yes

Yes

Is enemy audible?

YesNo

No

No

Creep

Attack

Attack

Move

Is enemy
on flank?

Figure 5.3 A decision tree

Each choice is made based on the character’s knowledge. Because decision trees are often used
as simple and fast decision mechanisms, characters usually refer directly to the global game state
rather than have a representation of what they personally know.

The algorithm continues along the tree,making choices at each decision node until the decision
process has no more decisions to consider. At each leaf of the tree an action is attached. When the
decision algorithm arrives at an action, that action is carried out immediately.

Most decision treenodes make very simple decisions, typically with only two possible
responses. In Figure 5.3 the decisions relate to the position of an enemy.

Notice that one action can be placed at the end of multiple branches. In Figure 5.3 the character
will choose to attack unless it can’t see the enemy or is flanked. The attack action is present at two
leaves.

Figure 5.4 shows the same decision tree with a decision having been made. The path taken by
the algorithm is highlighted, showing the arrival at a single action, which may then be executed
by the character.

Decisions

Decisions in a tree are simple. They typically check a single value and don’t contain any Boolean
logic (i.e., they don’t join tests together with AND or OR).

Depending on the implementation and the data types of the values stored in the character’s
knowledge, different kinds of tests may be possible. A representative set is given in the following
table, based on a game engine we’ve worked on:

Hard-coded knowledge may not be a good idea

11

Why: Maintainability

• Why hard-coded AI is not a good idea?
– Maintainability
• Add an extra check “is enemy a tank?”

12

296 Chapter 5 Decision Making

Is enemy visible?

Is enemy <10 m away?

Yes

Yes

Yes

Is enemy audible?

YesNo

No

No

Creep

Attack

Attack

Move

Is enemy
on flank?

Figure 5.3 A decision tree

Each choice is made based on the character’s knowledge. Because decision trees are often used
as simple and fast decision mechanisms, characters usually refer directly to the global game state
rather than have a representation of what they personally know.

The algorithm continues along the tree,making choices at each decision node until the decision
process has no more decisions to consider. At each leaf of the tree an action is attached. When the
decision algorithm arrives at an action, that action is carried out immediately.

Most decision treenodes make very simple decisions, typically with only two possible
responses. In Figure 5.3 the decisions relate to the position of an enemy.

Notice that one action can be placed at the end of multiple branches. In Figure 5.3 the character
will choose to attack unless it can’t see the enemy or is flanked. The attack action is present at two
leaves.

Figure 5.4 shows the same decision tree with a decision having been made. The path taken by
the algorithm is highlighted, showing the arrival at a single action, which may then be executed
by the character.

Decisions

Decisions in a tree are simple. They typically check a single value and don’t contain any Boolean
logic (i.e., they don’t join tests together with AND or OR).

Depending on the implementation and the data types of the values stored in the character’s
knowledge, different kinds of tests may be possible. A representative set is given in the following
table, based on a game engine we’ve worked on:

if(enemy.isVisible()) {
if(distance(player, enemy) < 10){

attack();
}
else{

if(enemy.isOnFlank()){
move();

}
else{

attack();
}

}
}
else{ … … …

Which one would you choose to update?

Why: Tree Balancing

• The longer the branch the longer it takes to go
along it

13

304 Chapter 5 Decision Making

5.2.7 Performance of Decision Trees

You can see from the pseudo-code that the algorithm is very simple. It takes no memory, and its
performance is linear with the number of nodes visited.

If we assume that each decision takes a constant amount of time and that the tree is balanced
(see the next section for more details), then the performance of the algorithm is O(log2 n), where
n is the number of decision nodes in the tree.

It is very common for the decisions to take constant time. The example decisions we gave in
the table at the start of the section are all constant time processes. There are some decisions that
take more time, however. A decision that checks if any enemy is visible, for example, may involve
complex ray casting sight checks through the level geometry. If this decision is placed in a decision
tree, then the execution time of the decision tree will be swamped by the execution time of this
one decision.

5.2.8 Balancing the Tree

Decision trees are intended to run fast and are fastest when the tree is balanced. A balanced tree
has about the same number of leaves on each branch. Compare the decision trees in Figure 5.9.
The second is balanced (same number of behaviors in each branch), while the first is extremely
unbalanced. Both have 8 behaviors and 7 decisions.

Unbalanced tree

A

H

B C D E F G

A

H

B

C

D

E

F

G

Balanced tree

Figure 5.9 Balanced and unbalanced trees

304 Chapter 5 Decision Making

5.2.7 Performance of Decision Trees

You can see from the pseudo-code that the algorithm is very simple. It takes no memory, and its
performance is linear with the number of nodes visited.

If we assume that each decision takes a constant amount of time and that the tree is balanced
(see the next section for more details), then the performance of the algorithm is O(log2 n), where
n is the number of decision nodes in the tree.

It is very common for the decisions to take constant time. The example decisions we gave in
the table at the start of the section are all constant time processes. There are some decisions that
take more time, however. A decision that checks if any enemy is visible, for example, may involve
complex ray casting sight checks through the level geometry. If this decision is placed in a decision
tree, then the execution time of the decision tree will be swamped by the execution time of this
one decision.

5.2.8 Balancing the Tree

Decision trees are intended to run fast and are fastest when the tree is balanced. A balanced tree
has about the same number of leaves on each branch. Compare the decision trees in Figure 5.9.
The second is balanced (same number of behaviors in each branch), while the first is extremely
unbalanced. Both have 8 behaviors and 7 decisions.

Unbalanced tree

A

H

B C D E F G

A

H

B

C

D

E

F

G

Balanced tree

Figure 5.9 Balanced and unbalanced trees

Unbalanced tree

Balanced tree

if(…) {
A;

}
else if(…){

B;
}
else if (…){

C;
}
else if(…) {

D;
… … …

Manageable Implementation

• Special languages
– Overkill
– Can be done with AI scripting approaches

• A library of (C++ / Java) classes for attributes,
tests and actions
– Somewhat similar to scene graph libraries

14

Extensions: Split on Other Values

• Yes/No is not an answer
– Decide on other attributes. For example,

15

300 Chapter 5 Decision Making

Green action

Is black? Is red? Is yellow?
No No No

Yes
Yes

YesBlack action

Red action

Yellow action

Figure 5.7 Deep binary decision tree

Green action

Which alert
state?

Black
Black action

Red action

Yellow action

Red
Yellow

Green

Figure 5.8 Flat decision tree with four branches

down to a series of binary tests (if statements in C/C++, for example). Although the deci-
sion tree is simpler with multiple branches, the implementation speed is usually not significantly
different.

Second, decision trees are typically binary because they can be more easily optimized. In
addition, some learning algorithms that work with decision trees require them to be binary.

You can do anything with a binary tree that you can do with a more complex tree, so it
has become traditional to stick with two branches per decision. Most, although not all, of the
decision tree systems we’ve worked with have used binary decisions. We think it is a matter of
implementation preference. Do you want the extra programming work and reduction in flexibility
for the sake of a marginal speed up?

5.2.3 Pseudo-Code

A decision tree takes as input a tree definition, consisting of decision tree nodes. Decision tree
nodes might be decisions or actions. In an object-oriented language, these may be sub-classes of

VS

300 Chapter 5 Decision Making

Green action

Is black? Is red? Is yellow?
No No No

Yes
Yes

YesBlack action

Red action

Yellow action

Figure 5.7 Deep binary decision tree

Green action

Which alert
state?

Black
Black action

Red action

Yellow action

Red
Yellow

Green

Figure 5.8 Flat decision tree with four branches

down to a series of binary tests (if statements in C/C++, for example). Although the deci-
sion tree is simpler with multiple branches, the implementation speed is usually not significantly
different.

Second, decision trees are typically binary because they can be more easily optimized. In
addition, some learning algorithms that work with decision trees require them to be binary.

You can do anything with a binary tree that you can do with a more complex tree, so it
has become traditional to stick with two branches per decision. Most, although not all, of the
decision tree systems we’ve worked with have used binary decisions. We think it is a matter of
implementation preference. Do you want the extra programming work and reduction in flexibility
for the sake of a marginal speed up?

5.2.3 Pseudo-Code

A decision tree takes as input a tree definition, consisting of decision tree nodes. Decision tree
nodes might be decisions or actions. In an object-oriented language, these may be sub-classes of

Possible data types:
• Boolean
• Enumeration
• 3D Vector (vector length within range, vector direction is given,…)
• …

Variations: Random Decisions

• Completely predictable
behaviour is boring

• Randomness breaks the
pattern

• Coin can be biased (player
psychology)

16

?

See enemy?
yes

…
Flip a coin

H

Go left

T

Go right

Sticking to Choice

• Marine behaviour

• Sense – Think – Act cycle
navigates the decision tree
every time

• Random choice every
iteration will make the
marine freeze

17

Sense

Think

Act

Attacked by plain
no

…
Flip a coin

H

Take cover

T

Shoot
back

Stick to choice
(for a while)

Learning Decision Trees
• Aims:
– Better gameplay
– Cheaper AI
– Adaptive AI

• Not often used by game developers
– Reproducibility and quality control
– Increased run time
– Can be faked

18

Alternatives to ML

• Pre-programmed levels of difficulty
– Switch between behaviours

• Incremental introduction of new game entities
– “Uncover” cleverness of AI

• Tweaking parameters at run-time
– Reduce the number of mistakes
– Improve aim
– Limited form of machine learning (stats)
• Learning user’s habits (attack from right etc.)

19

Faking vs Learning
• Learning (potentially) gives more

options but

• With faking the AI code remains
unchanged and can be tested
debugged

• On the other hand, learning gives
stunning results in traditional AI (not
game AI).

20

http://heli.stanford.edu/

When to Learn

• Online learning
– While playing
– Input from players
– Aim: adaptive behaviour

• Offline learning
– Before the product is released
– Input from designers
– Aim: finding best behaviours

21

Basic Techniques

• Analysing examples
– About 75% are used to learn
– The rest (25%) are used to test

• Reinforcement learning
– Rewards and punishments for actions

22

Decision Trees from Examples

• Given: Attributes, Decisions, Examples
• Required: Construct a tree

23

Health Cover Ammo Decision

Healthy In Cover With Ammo Attack

Hurt In Cover With Ammo Attack

Healthy In Cover Empty Defend

Hurt In Cover Empty Defend

Hurt Exposed With Ammo Defend

Example: marine behaviour

Decision Tree Learning Algorithm

24

Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification
else if attributes is empty then return Mode(examples)
else

best←Choose-Attribute(attributes, examples)
tree← a new decision tree with root test best

for each value vi of best do

examplesi ← {elements of examples with best = vi}
subtree←DTL(examplesi,attributes− best,Mode(examples))
add a branch to tree with label vi and subtree subtree

return tree

Chapter 18, Sections 1–3 23

From S. Russel, P. Norvig “Artificial Intelligence: A modern approach”, Prentice Hall

Can be a majority

Example

25

Health Cover Ammo Decision
Healthy In Cover With

Ammo
Attack

Hurt In Cover With
Ammo

Attack

Healthy In Cover Empty Defend
Hurt In Cover Empty Defend
Hurt Exposed With

Ammo
Defend

isHealthy?
yes

inCover?
yes

Defend

no

withAmmo?
yes

Attack

no

Defend

no

withAmmo?
yes

Attack

no

Defend

Attributes order: the column (random) order

Different Order of Attributes

26

Health Cover Ammo Decision
Healthy In Cover With

Ammo
Attack

Hurt In Cover With
Ammo

Attack

Healthy In Cover Empty Defend
Hurt In Cover Empty Defend
Hurt Exposed With

Ammo
Defend

withAmmo?
yes

inCover?
yes

Defend

no Defend

no

Attack

Attributes order: Ammo, Cover

Two Learnt Trees

27

isHealthy?
yes

inCover?
yes

Defend

no

withAmmo?
yes

Attack

no

Defend

no

withAmmo?
yes

Attack

no

Defend

Attributes order: the column (random) order

withAmmo?
yes

inCover?
yes

Defend

no Defend

no

Attack

Attributes order: Ammo, Cover

Health does not
matter!

The Order of Attributes Matters

• Pick one best splits the cases
• Bad choice may lead to overfitting: decision

tree can handle given examples but not
generalise from them

• First, split on the attribute that give biggest
Information Gain
– Information theory (Shannon, Weaver, 1949)
– Numerical value of attribute based on statistics

28

Information Entropy

For a set of examples S let
• np be the number of examples with a positive

outcome (e.g. Attack)
• nn be the number of examples with a

negative outcome (e.g. Defend)
Then, the entropy (a measure of uncertainty) for
this set is

29

ES = −
np

np + nn
log2

np
np + nn

"

#
$$

%

&
''−

nn
np + nn

log2
nn

np + nn

"

#
$$

%

&
''

Total number of examples

Information Gain

Every attribute A splits the set of examples S
into two subsets
• SA, for which the value of A is true
– Compute the entropy for SA

• S~A, for which the value of A is false
– Compute the entropy for S~A

30

GA = ES −
SA
S
ESA

−
S~A
S

ES~A

ESA

ES~A
Number of elements in S~A

ID3

Pick the attribute with the highest information
gain

Ghealth = 0.02
Gcover = 0.171
Gammo = 0.420

31

Best choice

Health Cover Ammo Decision
Healthy In Cover With

Ammo
Attack

Hurt In Cover With
Ammo

Attack

Healthy In Cover Empty Defend
Hurt In Cover Empty Defend
Hurt Exposed With

Ammo
Defend

Learning with ID3

32

Health Cover Ammo Decision
Healthy In Cover With

Ammo
Attack

Hurt In Cover With
Ammo

Attack

Healthy In Cover Empty Defend
Hurt In Cover Empty Defend
Hurt Exposed With

Ammo
Defend

withAmmo?
yes

inCover?
yes

Defend

no Defend

no

Attack

Attributes order: Ammo, Cover

Best outcome

Dealing with Noise

• Data often contains “noise”
– E.g., human player decides to attack regardless of

not having any ammo
• The learnt decision tree will take irrelevant

attributes into account
– E.g. in our example, Health was irrelevant

• Pruning techniques: eliminate splitting on
statistically insignificant attributes

33

Black & White

• Most prominent example where
decision trees were learnt is Black &
White.
– Creature can be trained by users

• If the creature behaviour is “bad”, hard to
retrain

– Very positive initial reception
• Some critics reconsidered their opinion

34

Decision Trees: Summary

• Advantages:
– Simple, compact representation
– Easy to create and understand
– Decision trees can be learned

• Disadvantages:
– Slightly more coding than other techniques (FSMs)
– Learnt trees may contain errors

35

Expert (Rule-Based) Systems in Games

• Rule-based knowledge representation
– Set of rules
– Facts in working memory
– Inference engine
• Conflict resolution

36

Rule Base

Inference
Engine

Working
Memory

User

facts

facts

facts
rules

Game

Chaining

• Forward chaining
– Game actions cause changes to the working

memory
– AI agent acts on the derived knowledge
– Reactive AI

• Backward chaining
– Pursue goals
– Goal-driven AI
• Other methods are more common

37

Example: Age of Kings

(defrule  (unit-type-count
villager > 0)  =>  (chat-to-all "I
just made my first rule!!!!")

(disable-self);

)

38
http://aok.heavengames.com/cgi-bin/aokcgi/display.cgi?action=ct&f=26,29,,30

Define rule
Condition

Action

Execute only
once

Larger Rule
(defrule (building-type-count-total
house > 0)  (building-type-count-total
mill == 0)  (resource-found
food)  (can-build mill) => (build mill) )

39

Rules are commonly used in strategy game AI

