Principles of Computer Game
Design and Implementation

Lecture 23

We already learned

e Decision Tree

Outline for today

 Finite state machine

Creating & Controlling Al Behaviors

Behavior: A Sequence of Actions

- | N
\

Move ’
Acquire
oo \ « Scan Target
* Move Approach
)) Target)

Fire
Return \'J
” for
Repairs N
Fire
Fire

The patrol and guard behavior is defined as a sequence of actions

T

-

So, Basically...

S
Fire Aim
g N\
Idle Attack Approach

- ~ ~

* An agent goes through a sequence of states

e Arrows indicate transitions

Finite-State Machine (FSMs)

* Abstract model of computation

— Formally:
* Set of states
* A starting state
* An input vocabulary

* A transition function that maps inputs and the current
state to a next state

FSMs In Game Development

Deviate from formal definition

1. States define behaviors (containing code)
 Wander, Attack, Flee
* As longer as an agent stays in a state, it carries on the same action

2. Transition function divided among states
* Keeps relation clear

3. Extra state information
* For example, health

Recall: User Control V Modelling

* |n these examples, user controlled completely the
state of the world or there was no user input.

— How to mix user control and physical modelling?
* Game states

User initiates motion simulation

User controls
the worl Q

Motion simulation stops

Finite-State Machine:
UML Diagram

/ See Enemy
‘—b< Wander > \< Attack >

T emn

No Enemy

S
>

g
%, &
& Flee < N

Initial state

State Actions

e Actions is what player sees
— Movement
— Animation

* |Instead of one action can consider
— onkntry

e Executed when FSM enters the state
— onkExit

— onUpdate
* Runs every tick while FSM is in the state

10

Finite-State Machine:
Approaches

* Three approaches
— Hardcoded (switch statement)
— Scripted
— Hybrid Approach

Hard-Coded FSM

enum State {wander, attack, flee};
State state;

switch (state)
{
case wander:
Wander () ;

if(SeeEnemy ()) { state
break;

State.attack;

case attack:
Attack() ;
if(LowOnHealth())

if (NoEnemy ())
break;

—,—

state State.flee; }
state = State.wander;

—,—

case flee:
Flee() ;

if (NoEnemy ()) { state
break;

State.wander;

Hard-Coded FSM: Weaknesses

* Maintainability
— Language doesn’t enforce structure
— Can’t determine 15t time state is entered

* FSM change -> recompilation

— Critical for large projects

— Cannot be changed by game designers / players
* Harder to extend

— Hierarchical FSMs
— Probabilistic / fuzzy FSMs

Finite-State Machine:
Scripted with alternative language

BeginFSM
State(STATE Wander)
OnEnter
Java code
OnUpdate
Java code

if (seeEnemy()) ChangeState(STATE Attack);

OnExit
Java code
State(STATE Attack)

OnEnter
Java code
OnUpdate
Java code to execute every tick
OnExit

EndFSM

W

Finite-State Machine:
Scripting Advantages

Structure enforced

Events can be handed as well as polling
OnEnter and OnExit concept exists

Can be authored by game designers

— Easier learning curve than straight C/C++

Finite-State Machine:
Scripting Disadvantages

* Not trivial to implement
* Several months of development

— Custom compiler

* With good compile-time error feedback

— Bytecode interpreter
* With good debugging hooks and support

* Scripting languages often disliked by users

— Can never approach polish and robustness of commercial
compilers/debuggers

Finite-State Machine:
Hybrid Approach

Use a class and C-style macros to approximate a scripting
language

Allows FSM to be written completely in C++ leveraging existing
compiler/debugger

Capture important features/extensions
— OnEnter, OnExit
— Timers
— Handle events
— Consistent regulated structure
— Ability to log history
— Modular, flexible, stack-based
— Multiple FSMs, Concurrent FSMs

Can’t be edited by designers or players

Transitions

Internal
— Independent of environment

— E.g. out of ammo

External

— Event-driven
Immediate

Deferred

— E.g. to wait till animation sequence stops

Transitions

@

Internal

External

Immediate

Immediate transitions
are used internally to
eliminate delays in
time critical
operations.

Deferred

Deferred transitions
are used internally
for most operations.

\

External transitions
are not normally
immediate.

External transitions
are best performed
using a deferred
transition.

19

Transitions

Deferred External

transition to Aim

Frame 120 Frame 121
Begin Continue

performing performing
Aim State Aim State

Deferred Internal
transition to
Fire State - Stop
performing Aim,
Begin Fire next
frame.

Frame 122 Frame 123
Begin Continue
performing performing
Fire State Fire State

Immediate
internal
transition to
Dodge State -
Stop performing
Fire, begin
performing
Dodge
immediately.

20

Decision Trees in Transitions

. C Raise alarm
om pa re Player in sight]AND player is far away] i

Alert

Computationally- ====={Player in sight/ AND player is close by] Defend
expensive test performed -

twice

* With

Computationally- Can see Player

. the player? nearby?
expensive test performed Alert Yes] ’
once -

[No]

 /

21

Generalisation: Hierarchical FSM

e Often, there are several “levels” of behaviour
— Complications from “insignificant details”

Enemy close

Attack

Enemy dead
Reload, aim,

shoot

Machine might be large. Very large.

22

Clean Up FSM Example

* Arobot cleans a floor space

Search [Seen trash] Head for
I > trash

A

[wel 109)]

Head for
compactor

* Unless it recharges, it breaks

23

Recharging Clean Up FSM Example

[wey 109)]

«

Head for
compactor

But what to do after charging???

24

Recharging Cleaner FSM

Get power
(search)

Get power
(head for

Head for
trash

Get power
(head for
compactor)

[Got item]

Three states just to
remember where to
come back

Head for
compactor

25

Hierarchical Approach

Clean up

Search [Seen trash] Head for
I > trash

compactor/

Hierarchical state

[No power] e
1 Get power }
g) X [Recharged] -
g
Y
Head for < .

Hierarchical Recharge

[No trash]

/c(eanup/\

A

Get power
Search [Seen trash] Head for
»| trash [No power]
[Day]
//}9%0) [Recharged] \
[Use mains J [Use solar J
\/
Head for

Y
%Os
Q
@
com pactor/ \

[Night]

x u_l ./

[way 109]

Algorithm

e Based on the notion of a current state

— Every state stores the current state of its sub FSM

* Hierarchical evaluation

— If transition is applicable to higher-level current
state

* Change state

— Else
* Execute the OnStay method
* Apply transition to the sub FSM

Example

Events:

* No power
 Recharged
e Seen trash

* No power

Clean up .
Get power

@ [Seen treeh) ~(@ [No power]
* Lj ” [Day]
[Recharged]
3
[Night]

A

[way 109]

Head for

compactor/

Stack-Based FSMs

* This idea can be extended to allow storing
past states using a stack

* Every time a machine is “suspended” the
current state is pushed into the stack

* Every time itis “resumed” the state is popped
from the stack

— E.g. several machines and a switch between them

Finite-State Machine In Game
Development: Summary

* Most common game Al software pattern
— Natural correspondence between states and behaviors
— Easy to diagram
— Easy to program
— Easy to debug
— Completely general to any problem

* Problems
— Explosion of states

— Too predictable
— Often created with ad hoc structure

