
Principles of Computer Game
Design and Implementation

Lecture 24

We already learned

• Decision Tree
• Finite State Machine

2

3

FSM Problems: Reminder
• Explosion of states
• Too predictable
• Often created with ad hoc structure
• Mixture of different level concepts:
– Game engine developer
• “Atomic” actions and tests linking AI to the game world

– AI developer
• Complex behaviours

– FSM States combine both
• What to do with more than one action per state?

Outline for today

• Behaviour tree

4

Behaviour Trees

• Inspired by a number of techniques
– Hierarchical FSMs
– Scheduling / planning
– Planning

• First (famously) used in Halo 2
– Picked up by other developers

• Clear separation between AI and Game Engine

5

Tasks

AI agent runs a task. A task can succeed or fail
• Simple tasks
– Conditions
– Actions

• Complex tasks
– Built hierarchically from other tasks

using
• Composites
• Decorators

6

Game engine
developers

AI
developers

Conditions

• Test some properties of the game.
– Proximity
– Line of sight
– Character properties (has ammo etc)

• Succeed or fail
– Like if-then test

• Typically execute fast

7

336 Chapter 5 Decision Making

Figure 5.22 Example of a selector node in a behavior tree

Figure 5.23 Example of a sequence node in a behavior tree

visible enemy, and the Sequence task goes on to execute the next child task, which is to turn away,
followed by the running task. The Sequence task will then terminate successfully.

A Simple Example

We can use the tasks in the previous example to build a simple but powerful behavior tree. The
behavior tree in this example represents an enemy character trying to enter the room in which
the player is standing.

We’ll build the tree in stages, to emphasize how the tree can be built up and extended. This
process of refining the behavior tree is part of its attraction, as simple behaviors can be roughed
in and then refined in response to play testing and additional development resources.

Our first stage, Figure 5.24, shows a behavior tree made up of a single task. It is a move action,
to be carried out using whatever steering system our engine provides.

To run this task we give it CPU time, and it moves into the room. This was state-of-the-art
AI for entering rooms before Half-Life, of course, but wouldn’t go down well in a shooter now!
The simple example does make a point, however. When you’re developing your AI using behavior
trees, just a single naive behavior is all you need to get something working.

In our case, the enemy is too stupid: the player can simply close the door and confound the
incoming enemy.

Attack Taunt Stare

Enemy
visible?

Turn
away

Run
away

Actions

• Alter the state of the game
– Animation, audio
– Play a dialog
– Movements
– Change the character internal state (cure)

• Can take time
• Typically succeed
– Failing is like an exception

8

336 Chapter 5 Decision Making

Figure 5.22 Example of a selector node in a behavior tree

Figure 5.23 Example of a sequence node in a behavior tree

visible enemy, and the Sequence task goes on to execute the next child task, which is to turn away,
followed by the running task. The Sequence task will then terminate successfully.

A Simple Example

We can use the tasks in the previous example to build a simple but powerful behavior tree. The
behavior tree in this example represents an enemy character trying to enter the room in which
the player is standing.

We’ll build the tree in stages, to emphasize how the tree can be built up and extended. This
process of refining the behavior tree is part of its attraction, as simple behaviors can be roughed
in and then refined in response to play testing and additional development resources.

Our first stage, Figure 5.24, shows a behavior tree made up of a single task. It is a move action,
to be carried out using whatever steering system our engine provides.

To run this task we give it CPU time, and it moves into the room. This was state-of-the-art
AI for entering rooms before Half-Life, of course, but wouldn’t go down well in a shooter now!
The simple example does make a point, however. When you’re developing your AI using behavior
trees, just a single naive behavior is all you need to get something working.

In our case, the enemy is too stupid: the player can simply close the door and confound the
incoming enemy.

Attack Taunt Stare

Enemy
visible?

Turn
away

Run
away

Task Interface

• Actions and tests are used in other AI
techniques

but…
• In behaviour trees, all tasks have the same

interface
– Simple case: return a Boolean value
• Succeed / fail

– Can be easily combined together

9

Composites

Composites run their child tasks in turn
• Sequence
– Terminates immediately with failure

if any of child tasks fail
– Succeeds if all child tasks succeed

• Selector
– Terminates immediately with success

if any of the child tasks succeed
– Fails if all child tasks fail

10

336 Chapter 5 Decision Making

Figure 5.22 Example of a selector node in a behavior tree

Figure 5.23 Example of a sequence node in a behavior tree

visible enemy, and the Sequence task goes on to execute the next child task, which is to turn away,
followed by the running task. The Sequence task will then terminate successfully.

A Simple Example

We can use the tasks in the previous example to build a simple but powerful behavior tree. The
behavior tree in this example represents an enemy character trying to enter the room in which
the player is standing.

We’ll build the tree in stages, to emphasize how the tree can be built up and extended. This
process of refining the behavior tree is part of its attraction, as simple behaviors can be roughed
in and then refined in response to play testing and additional development resources.

Our first stage, Figure 5.24, shows a behavior tree made up of a single task. It is a move action,
to be carried out using whatever steering system our engine provides.

To run this task we give it CPU time, and it moves into the room. This was state-of-the-art
AI for entering rooms before Half-Life, of course, but wouldn’t go down well in a shooter now!
The simple example does make a point, however. When you’re developing your AI using behavior
trees, just a single naive behavior is all you need to get something working.

In our case, the enemy is too stupid: the player can simply close the door and confound the
incoming enemy.

Attack Taunt Stare

Enemy
visible?

Turn
away

Run
away

336 Chapter 5 Decision Making

Figure 5.22 Example of a selector node in a behavior tree

Figure 5.23 Example of a sequence node in a behavior tree

visible enemy, and the Sequence task goes on to execute the next child task, which is to turn away,
followed by the running task. The Sequence task will then terminate successfully.

A Simple Example

We can use the tasks in the previous example to build a simple but powerful behavior tree. The
behavior tree in this example represents an enemy character trying to enter the room in which
the player is standing.

We’ll build the tree in stages, to emphasize how the tree can be built up and extended. This
process of refining the behavior tree is part of its attraction, as simple behaviors can be roughed
in and then refined in response to play testing and additional development resources.

Our first stage, Figure 5.24, shows a behavior tree made up of a single task. It is a move action,
to be carried out using whatever steering system our engine provides.

To run this task we give it CPU time, and it moves into the room. This was state-of-the-art
AI for entering rooms before Half-Life, of course, but wouldn’t go down well in a shooter now!
The simple example does make a point, however. When you’re developing your AI using behavior
trees, just a single naive behavior is all you need to get something working.

In our case, the enemy is too stupid: the player can simply close the door and confound the
incoming enemy.

Attack Taunt Stare

Enemy
visible?

Turn
away

Run
away

… … …

… … …

Sequence of Actions

• Sequence of tasks to achieve a goal
– Get ready for Uni task

11

Wake up Get DressedWash up

Sequences of Sequences

• Logically, there is no need to have sequences
as children of sequences, but…

12

Put socksPut shirt on EatCook meal

Dress up Eat

Sequence As Conditions

• Sequence terminates immediately with failure
if any of child tasks fail
– The second task is run only when first succeeds

13

Socks clean? Put on

Conditions and Actions

• More than one child

• But what if socks are not clean?

14

Socks clean? Put right onPut left on

Selectors

Terminate immediately with success if any of the
child tasks succeed

15

Socks clean? Put on Get new socks Put on

?

More Complicated Behaviour

16

Socks clean? Put on
Move to

chest

Get socks

?

?

Drawer open?

Put on

Get socksOpen drawer

Conditions Actions and Composites

• Conditions and actions combined together
with composites allow to express complex
behaviours

• Goal-driven scripting

• Reactive plans: what if…
– But not a planner!

17

Halo 2 Decision-Making
From Demián Isla’s

GDC’05 presentation

Root

Self-preservation

Engage

Search

Charge

Fight

Guard

Cover

Presearch

Uncover

Guard

Grenade

Investigate

Idle Guard

Retreat Flee

Vehicle fight

Vehicle strafe

Melee
Root

Engage

Search Uncover

Bug Fixes as a Hack

• Behaviour trees are highly
adaptable
– Suppose you discovered a very

rare condition under which AI
fails

– You know what should happen
– But time is pressing

19

?

Correct behaviour

Decorators

• Decorators modify the behaviour of a task
– Limit (Loop)
• Time limit / Attempts

– UntilFail
• Repeat the task until it fails

– Inverter
– Ignorer
• Runs the task and always reports success

20

Put socks
on

Decorators Example (1)

21

Socks found?

ignore Put shoes
on

Dressing up

Decorators Example (2)

22

5.4 Behavior Trees 347

4 Pause,
5 Hit)),
6 Restrain),
7 Selector(Sequence(Audible,
8 Creep),
9 Move))

The basic behavior of this tree is similar to before. The Selector node at the root, labeled (a)
in the figure, will initially try its first child task. This first child is a Sequence node, labeled (b).
If there is no visible enemy, then the Sequence node (b) will immediately fail and the Selector
node (a) at the root will try its second child.

The second child of the root node is another Selector node, labeled (c). Its first child (d) will
succeed if there is an audible enemy, in which case the character will creep. Sequence node (d)
will then terminate successfully, causing Selector node (c) to also terminate successfully. This, in
turn, will cause the root node (a) to terminate successfully.

So far, we haven’t reached the Decorator, so the behavior is exactly what we’ve seen before.
In the case where there is a visible enemy, Sequence node (b) will continue to run its children,

arriving at the decorator. The Decorator will execute Sequence node (e) until it fails. Node (e) can

Figure 5.29 Example behavior tree

?

(b)

(e)

(c)

(a)

(d)

?

Until
failVisible? Restrain

Audible? Creep

Conscious? Hit HitPause

Move

Guard AI

Guarding Resources with Decorators

• Semaphore decorator
– Every instance refers to the same

flag
– Whenever an AI entity tries to

access resource, checks for the
flag
• If available, set the flag, run the task,

unset the flag

23

Sound engine
semaphore

Play sound

Ignore

Implementation
public class Task {

Boolean run()

}

public class Composite extends Task {

Composite (Vector<Task> subtasks)

}

…

24

Quite straightforward but…

BTs and Multitasking

• So far we did not consider multitasking
– Decision trees execute fast
– FSMs state determines what to do

• In behaviour trees, tasks may span over time
– Either use multithreading
• Every tree is being run by a thread

– Or use scheduling

25

Tick-based model

•
Ti

ck
-b

as
ed

 m
od

el
 fr

om
ht

tp
://

jb
t.s

ou
rc

ef
or

ge
.n

et
/

26

��������	
�

�

	�
���
����

��������	
� ��������	
�

�
	�	��� �
	�	���

�
	�	���

�
������

�����	�

���

�������
	���

Figure 1: Overview of the BT architecture

2.3 Architecture

Figure 1 shows an overview of the JBT Core architecture. There is a Model
BT that represents a particular behaviour. Also, there is a BT Executor for
every entity that wants to run the Model BT. Each BT Executor makes use of
the Model BT and builds an Execution BT that actually runs the behaviour
conceptualized by the Model BT. An external Game AI ticks the BT Executors,
in order for them to update the trees that they are running.

The user of the framework does not have to know all the details about how
JBT internally works. However, since he has to implement some classes in order
to run his own trees, at least he should know the general architecture of JBT.

2.4 BT Model

Before even starting to explain all the steps required to build and run BTs with
JBT, we have to first think about what BT model JBT o�ers. JBT implements
a BT model that is mainly based on that of [2]. Our model also include guards
and static and dynamic priority lists, as described in [1]. With this model the
user can implement a wide range of behaviours.

For instance, the tree of figure 2 represents a simple tree that is used by a
game character that wants to open a door. First of all, it checks if the door is
closed (condition DoorClosed). If so, then it tries to open it by executing the
action OpenDoor.

4

http://jbt.sourceforge.net/

Parallel Composites

• In presence of multitasking, one can run tasks
in parallel
– E.g. for group behaviours

27

Soldier
1: attack

Soldier 1:
Has ammo?

Soldier
2: attack

Soldier 2:
Has ammo?

Group attack

360 Chapter 5 Decision Making

8 def run():
9 interrupter.setResult(desiredResult)

10 return True

Together, these two tasks give us the ability to communicate between any two points in the
tree. Effectively they break the strict hierarchy and allow tasks to interact horizontally.

With these two tasks, we can rebuild the tree for our computer-using AI character to look like
Figure 5.35.

In practice there are a number of other ways in which pairs of behaviors can collaborate, but
they will often have this same pattern: a Decorator and an Action. We could have a Decorator
that can stop its child from being run, to be enabled and disabled by another Action task. We
could have a Decorator that limits the number of times a task can be repeated but that can be
reset by another task. We could have a Decorator that holds onto the return value of its child and
only returns to its parent when another task tells it to. There are almost unlimited options, and
behavior tree systems can easily bloat until they have very large numbers of available tasks, only a
handful of which designers actually use.

Eventually this simple kind of inter-behavior communication will not be enough. Certain
behavior trees are only possible when tasks have the ability to have richer conversations with one
another.

Figure 5.35 Using Parallel and Interrupter to keep track of Conditions

Interrupter Use computers Perform interruption

Until fail

Player in position?

Event Handling

BT event support
is poor

28

Data in BTs

• One of strong points of BT model is that all
tasks have same interface

• Tasks cannot take parameters as input

• Use blackboard AKA notice board for
communication (see your COMP213 notes)

29

Blackboard for Inter-Task
Communication

30

362 Chapter 5 Decision Making

Figure 5.36 A behavior tree communicating via blackboard

In a squad-based game, for example, we might have a collaborative AI that can autonomously
engage the enemy. We could write one task to select an enemy (based on proximity or a tactical
analysis, for example) and another task or sub-tree to engage that enemy. The task that selects
the enemy writes down the selection it has made onto the blackboard. The task or tasks that
engage the enemy query the blackboard for a current enemy. The behavior tree might look like
Figure 5.36. The enemy detector could write:

1 target: enemy-10f9

to the blackboard. The Move and Shoot At tasks would ask the blackboard for its current “target”
values and use these to parameterize their behavior. The tasks should be written so that, if the
blackboard had no target, then the task fails, and the behavior tree can look for something
else to do.

In pseudo-code this might look like:

1 class MoveTo (Task):
2 # The blackboard we’re using
3 blackboard
4

5 def run():
6 target = blackboard.get(’target’)
7 if target:
8 character = blackboard.get(’character’)
9 steering.arrive(character, target)

Enemy visible? Select enemy
(write to blackboard)

Engage enemy
(read from blackboard)?

Always succeed

High ground available? Move to high ground

Extensions

• Priority of sub tasks for composites
– Dynamic priority
• Low health -> “take cover” gets higher priority

– kicking out of lower priority behaviour
• Probabilistic
• One-off tasks (random choice but do not

repeat)

• Interrupting tasks

31

Halo 2: Impulses (1)
Problem: What happens (with a prioritized list) when the priority

is not constant?

Unless the
player is in
vehicle, in

which case...

Charge

Fight

Vehicle entry

Engage

Charge

Fight

Vehicle entryEngage

From Demián Isla’s GDC’05 presentation

Halo 2: Impulses (2)
Solution: Separate alternative

trigger conditions out into
separate impulse

Two execution options
• In-place
• Redirect

Charge

Fight

Vehicle entry

Player vehicle
entry impulse

Engage

Charge

Fight

Vehicle entry

Vehicle entry

Engage

Charge

Fight

Vehicle entry

Player vehicle
entry impulse

Engage

Charge

Fight

Vehicle entry

Self-preserve on
damage impulse

Engage

Root

Self-preserve

Charge

Fight

Vehicle entry

Self-preserve on
damage impulse

Engage

Root

Self-preserve

Charge

Fight

Vehicle entry

Self-preserve on
damage impulse

Engage

Root

Self-preserve

Charge

Fight

Vehicle entry

Player vehicle
entry impulse

Engage

From Demián Isla’s GDC’05 presentation

Behaviour Trees: Summary

• Advantages
– Easy to understand
– Builds on past experience
– Executable system specification
– Support parallelism

• Disadvantages:
– Reactive and state-based behaviour may be

awkward to describe

34

