Principles of Computer Game Design and Implementation

Lecture 24

We already learned

- Decision Tree
- Finite State Machine

FSM Problems: Reminder

- Explosion of states
- Too predictable
- Often created with ad hoc structure
- Mixture of different level concepts:
 - Game engine developer
 - "Atomic" actions and tests linking AI to the game world
 - AI developer
 - Complex behaviours
 - FSM States combine both
 - What to do with more than one action per state?

Outline for today

• Behaviour tree

Behaviour Trees

- Inspired by a number of techniques
 - Hierarchical FSMs
 - Scheduling / planning
 - Planning
- First (famously) used in Halo 2
 Picked up by other developers
- Clear separation between AI and Game Engine

Tasks

Al agent runs a *task*. A task can succeed or fail

- Simple tasks
 - Conditions
 - Actions

Game engine developers

- Complex tasks
 - Built hierarchically from other tasks using
 - Composites
 - Decorators

AI developers

Conditions

- Test some properties of the game.
 - Proximity
 - Line of sight
 - Character properties (has ammo etc)
- Succeed or fail
 Like if-then test
- Typically execute fast

Actions

- Alter the state of the game
 - Animation, audio
 - Play a dialog
 - Movements

- Change the character internal state (cure)
- Can take time
- Typically succeed
 - Failing is like an exception

Task Interface

- Actions and tests are used in other AI techniques but...
- In behaviour trees, all tasks have the same interface
 - Simple case: return a Boolean value
 - Succeed / fail

– Can be easily combined together

Composites

Composites run their child tasks in turn

Sequence

- Terminates immediately with failure if any of child tasks fail
- Succeeds if all child tasks succeed

Selector

- Terminates immediately with success if any of the child tasks succeed
- Fails if all child tasks fail

Sequence of Actions

Sequence of tasks to achieve a goal

- Get ready for Uni task

Sequences of Sequences

• Logically, there is no need to have sequences as children of sequences, but...

Sequence As Conditions

- Sequence terminates immediately with failure if any of child tasks fail
 - The second task is run **only** when first succeeds

Conditions and Actions

• More than one child

• But what if socks are not clean?

Selectors

Terminate immediately with success if any of the child tasks succeed

Conditions Actions and Composites

 Conditions and actions combined together with composites allow to express complex behaviours

• Goal-driven scripting

- *Reactive plans*: what if...
 - But not a *planner!*

Halo 2 Decision-Making

Bug Fixes as a Hack

- Behaviour trees are highly adaptable
 - Suppose you discovered a very rare condition under which AI fails
 - You know what should happen
 - But time is pressing

Decorators

- Decorators modify the behaviour of a task
 - Limit (Loop)
 - Time limit / Attempts
 - UntilFail
 - Repeat the task until it fails
 - Inverter
 - Ignorer
 - Runs the task and always reports success

Decorators Example (1)

Guarding Resources with Decorators

- Semaphore decorator
 - Every instance refers to the same flag
 - Whenever an AI entity tries to access resource, checks for the flag
 - If available, set the flag, run the task, unset the flag

Implementation

```
public class Task {
   Boolean run()
}
```

```
public class Composite extends Task {
   Composite (Vector<Task> subtasks)
}
```

Quite straightforward but...

BTs and Multitasking

- So far we did not consider multitasking
 - Decision trees execute fast
 - FSMs state determines what to do
- In behaviour trees, tasks may span over time
 - Either use multithreading
 - Every tree is being run by a thread
 - Or use *scheduling*

Tick-based model

Parallel Composites

- In presence of multitasking, one can run tasks in parallel
 - E.g. for group behaviours

Event Handling

Data in BTs

 One of strong points of BT model is that all tasks have same interface

• Tasks cannot take parameters as input

 Use blackboard AKA notice board for communication (see your COMP213 notes)

Extensions

- Priority of sub tasks for composites
 - Dynamic priority
 - Low health -> "take cover" gets higher priority
 - kicking out of lower priority behaviour
- Probabilistic
- One-off tasks (random choice but do not repeat)
- Interrupting tasks

Halo 2: Impulses (1)

Problem: What happens (with a prioritized list) when the priority is not constant?

Unless the *player* is in vehicle, in which case...

From Demián Isla's GDC'05 presentation

Halo 2: Impulses (2)

Solution: Separate alternative trigger conditions out into separate **impulse**

- In-place
- Redirect

Behaviour Trees: Summary

- Advantages
 - Easy to understand
 - Builds on past experience
 - Executable system specification
 - Support parallelism
- Disadvantages:
 - Reactive and state-based behaviour may be awkward to describe