
Principles of Computer Game
Design and Implementation

Lecture 7

Movement in Space

• We used vectors to specify the position of an
object in space.

• Vectors are also used to specify the direction
of movement
– (and other purposes, e.g., lightening, physics, etc.)

2

Uniform Motion
• An object moves
– starting from point P0
– with a constant speed
– along a straight line

P(t) = P0 + t�V

Position in time tx

y

. P0 V

3

Vector Speed

• Motion equation
P(t) = P0 + t�V

– V specifies direction and speed

Twice as fast than thisx

y

. P0 V

2V

4

Main Loop

• In a game engine we do not
have access to continuous time

• Every iteration update the
position

P = P + V

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

5

jMonkeyEngine

• Create two boxes and then…

public void simpleUpdate(float tpf) {

b.move(new Vector3f(1,0,0).mult(0.005f));

c.move(new Vector3f(2,1,0).mult(0.005f));

}

6

Motion Speed

• How to make the objects move in any
direction with the same speed?

• Given a vector, we need to be able to keep the
direction but make its length 1.

7

Length of a 2D Vector

• Given a 2D vector V=(xv,yv) its length
x

y

a

bc
Pythagoras theorem

c2 = a2 + b2

kVk =
p
xv

2 + yv
2

E.g. V = (2, 7); kVk =
p

22 + 72
8

A Unit (Direction) Vector

• A vector of length ONE is called a unit vector
• One can always normalise a vector

U =
1

�V� ·V

V = (2, 7); kVk =
p

22 + 72; U =

U =
1⇥
53

· (2, 7) � (0.274, 0.959)

?

9

Length of a 3D Vector

• Given a 3D vector V=(xv,yv,zv) its length

Vector normalisation

kVk =

p
xv

2
+ yv

2
+ zv

2

U =
1

�V� ·V

10

Vector Normalisation
Vector3f v = new Vector3f(1,2,3);
float l = v.length();

Vector3f u = v.clone().mult(1/l);

c.move(u.mult(.01f));

11

But then…

Vector3f v = new
Vector3f(1,2,3);

Vector3f u = v.normalize();

float speed = 0.1f; // arbitrary

c.move(u.mult(speed));

12

Main Loop

• Every iteration update the
position

P = P + speed�U
• U is a unit vector

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End
Different speed on different hardware!

13

Welcome TPF

• simpleUpdate can use a time-per-frame
counter

c.move(u.mult(tpf));

14

Uniform Motion

• Every iteration update the
position

P = P + speed�tpf�U

• U is a unit vector
• speed is speed
• tpf is time per frame

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

15

Arbitrary Translation

• Every iteration update the
position

P = P + speed�tpf�U(t)

• U(t) - the direction of movement
– Depends on time!!

• speed is speed
• tpf is time per frame

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

16

Rotation

• Rotating is harder than translating
• We will look at the maths of it tomorrow

• For now, let’s talk about coding

17

Quaternions

• We could have studies what quaternions are

Quaternion is a “thing” that helps rotate objects.

18

simpleInitApp()

…

Box box = new Box(1, 1, 1);

b = new Geometry("Box", box);

b.setMaterial(mat);

rootNode.attachChild(this.b);

…

19

Example
…
Vector3f axis =
new Vector3f(1, 2, 3);

Quaternion quat = new Quaternion();
…

public void simpleUpdate(float tpf) {
quat.fromAngleAxis(tpf, axis);
b.rotate(quat);

}
…

20

Demo

21

But Then…
b.rotate(pitch, yaw, roll);

also works

22
http://upload.wikimedia.org/wikipedia/commons/7/7e/Rollpitchyawplain.png

A Simple Example

23

b.rotate(tpf*10*FastMath.DEG_TO_RAD,
0,
0);

Turns b at the rate of 10 degrees per second
around the X axis

Complex Motion Example

• A moon rotating around a planet

24

simpleInitApp()
Sphere a = new Sphere(100, 100, 1);

earth = new Geometry("earth", a);

earth.setMaterial(mat);

rootNode.attachChild(earth);

Sphere b = new Sphere(100, 100,
0.3f);

moon = new Geometry("moon", b);

moon.setMaterial(mat);

moon.setLocalTranslation(3, 0, 0);

25

simpleUpdate()

public void simpleUpdate(float tpf) {

quat.fromAngleAxis(tpf, axis);

moon.rotate(quat);

}

26

Let’s Run It

OOPS!

27

What Went Wrong

• In jME rotation and translation
are independent

• The moon rotates about it’s
centre

• Scene graph to the rescue!

28

rootNode

pivotNode

moon

planet

The pivotNode is the
centre of rotation

Demo

29

Code Snippet
private Node pivotNode = new Node(“PN");
…
public void simpleInitApp() {
…
pivotNode.attachChild(moon);

…
}

public void simpleUpdate(float tpf) {
quat.fromAngleAxis(tpf, axis);
pivotNode.rotate(quat);

}

30

X

Y

Z

Pivot Node Explained

31

Local translation

Pivot Points

• While it is possible to specify the exact
position of a geometry, it is often much
simpler to introduce a series of
transformations associated with internal
nodes of a scene graph.

32

