
Normative Multiagent Systems: A Dynamic Generalization
Xiaowei Huang1,2, Ji Ruan3, Qingliang Chen1, Kaile Su1,4

1Department of Computer Science, Jinan University, China
2Department of Computer Science, University of Oxford, United Kingdom

3School of Engineering, Computer and Mathematical Sciences,
Auckland University of Technology, New Zealand

4Institute for Integrated and Intelligent Systems, Gri�th University, Brisbane, Australia

Abstract
Social norms are powerful formalism in coordinat-
ing autonomous agents’ behaviour to achieve cer-
tain objectives. In this paper, we propose a dy-
namic normative system to enable the reasoning
of the changes of norms under di↵erent circum-
stances, which cannot be done in the existing static
normative systems. We study two important prob-
lems (norm synthesis and norm recognition) related
to the autonomy of the entire system and the agents,
and characterise the computational complexities of
solving these problems.

1 Introduction
Multiagent systems have been used to model and analyse dis-
tributed and heterogeneous systems, with agents being suit-
able for modelling software processes and physical resources.
Roughly speaking, autonomy means that the system by it-
self, or the agents in the system, can decide for themselves
what to do and when to do it [Fisher et al., 2013]. To
facilitate autonomous behaviours, agents are provided with
capabilities, e.g., to gather information by making observa-
tions (via e.g., sensors) and communicating with each other
(via e.g., wireless network), to a↵ect the environment and
other agents by taking actions, etc. Moreover, systems and
agents may have specific objectives to pursue. In this paper,
we study autonomy issues related to social norms [Shoham
and Tennenholtz, 1992], which are powerful formalism for
the coordination of agents, by restricting their behaviour
to prevent destructive interactions from taking place, or to
facilitate positive interactions [van der Hoek et al., 2007;
Ågotnes and Wooldridge, 2010].

Existing normative systems [Wooldridge and van der
Hoek, 2005; Ågotnes et al., 2007; Christelis and Rovatsos,
2009; Ågotnes and Wooldridge, 2010; Morales et al., 2013]
impose restriction rules on the multiagent systems to disal-
low agents’ actions based on the evaluation of current system
state. An implicit assumption behind this setting is that the
normative systems do not have (normative) states to describe
di↵erent social norms under di↵erent circumstances. That is,
they are static normative systems. Specifically, if an action
is disallowed on some system state then it will remain disal-
lowed when the same system state occurs again. However,

more realistically, social norms may be subject to changes.
For example, a human society has di↵erent social norms in
peacetime and wartime, and an autonomous multiagent sys-
tem may have di↵erent social norms when exposed to di↵er-
ent levels of cyber-attacks. This motivates us to propose a
new definition of normative systems (in Section 3), to enable
the representation of norms under multiple states (hence, dy-
namic normative systems). With a running example, we show
that a dynamic normative system can be a necessity if a mul-
tiagent system wants to implement certain objectives.

We focus on two related autonomy issues1. The first is
norm synthesis, which is to determine the existence of a nor-
mative system for the achievement of objectives. The success
of this problem suggests the autonomy of the multiagent sys-
tem with respect to the objectives, i.e., if all agents in the
system choose to conform to the normative system2, the ob-
jectives can be achieved. For static normative systems, norm
synthesis problem is shown to be NP-complete [Shoham and
Tennenholtz, 1995]. For our new, and more general, defi-
nition of normative systems, we show that it is EXPTIME-
complete. This encouraging decidable result shows that the
maximum number of normative states can be bounded.

The second is norm recognition, which can be seen as a
successive step after deploying an autonomous multiagent
systems (e.g., by norm synthesis). For deployed systems such
as [Chalupsky et al., 2001], it can be essential to allow new
agents to join anytime. If so, it is generally expected that the
new agent is able to recognise the current social norms after
playing in the system for a while. Under this general descrip-
tion, we consider two subproblems related to the autonomy
of the system and the new agent, respectively. The first one,
whose complexity is in PTIME, tests whether the system, un-
der the normative system, can be autonomous in ensuring that
the new agent can eventually recognise the norms, no matter
how it plays. If such a level of autonomy is unachievable,
we may consider the second subproblem, whose success sug-
gests that if the new agent is autonomous (in moving in a
smart way) then it can eventually recognise the norms. We
show that the second subproblem is PSPACE-complete.

1In this paper, we consider decision problems of these autonomy
issues. The algorithms for the upper bounds in Theorem 1, 2, and 3
can be adapted to implement their related autonomy.

2The synthesised normative system is a common knowledge [Fa-
gin et al., 1995] to the agents.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1123

2 Partial Observation Multiagent Systems
A multiagent system consists of a set of agents running in an
environment [Fagin et al., 1995]. At each time, every agent
takes a local action independently, and the environment up-
dates its state according to agents’ joint action. We assume
that agents have only partial observations over the system
states, because in most real-world systems, agents either do
not have the capability of observing all the information (e.g.,
an autonomous car on the road can only observe those cars in
the surrounding area by its sensors or cameras, etc) or are not
supposed to observe private information of other agents (e.g.,
a car cannot observe the destinations of other cars, etc).

Let Agt be a finite set of agents and Prop be a finite set
of atomic propositions. A finite multiagent system is a tu-
ple M = (S , {Acti}i2Agt, {Li}i2Agt, {Oi}i2Agt, I,T, ⇡), where S is
a finite set of environment states, Acti is a finite set of local
actions of agent i 2 Agt such that Act = Act1⇥...⇥Actn is a set
of joint actions, Li : S ! P(Acti)\ {;} provides on every state
a nonempty set of local actions that are available to agent i,
I ✓ S is a nonempty set of initial states, T ✓ S ⇥ Act ⇥ S is
a transition relation such that for all s 2 S and a 2 Act there
exists a state s0 such that (s, a, s0) 2 T , Oi : S ! O is an ob-
servation function for each agent i 2 Agt such thatO is a set of
possible observations, and ⇡ : S ! P(Prop) is an interpreta-
tion of the atomic propositions Prop at the states. We require
that for all states s1, s2 2 S and i 2 Agt, Oi(s1) = Oi(s2) im-
plies Li(s1) = Li(s2), i.e., an agent can distinguish two states
with di↵erent sets of next available actions.

Example 1 We consider a business system with two sets of
autonomous agents: the producer agents P = {p1, ..., pn}, and
consumer agents C = {c1, ..., cm}. Let Agt = P[C. Each pro-
ducer agent p j 2 P produces a specific kind of goods with lim-
ited quantity each time. There can be more than one agents
producing the same goods. We use g j 2 G to denote the kind
of goods that are produced by agent p j, and b j 2 N to denote
the number of goods that can be produced at a time. Every
consumer agent ci 2 C has a designated job which needs a
set of goods to complete. It is possible that more than one
goods of a kind are needed. We use ri to denote the multiset
of goods that are required by agent ci.

We use rri ✓ ri to denote the multiset of remaining goods to
be collected for ci, di 2 G0 = G[{?} to represent ci’s current
demand, and ti 2 P0 = P[{?} to represent the producer agent
from whom ci is currently requesting goods. Every interaction
of agents occurs in two consecutive rounds, and we use k 2
{1, 2} to denote the current round number.

Because g j, b j, ri do not change their values in a system
execution, we assume that they are fixed inputs of the system.
The multiagent system M has the state space as

S = {1, 2} ⇥ ⇧i2{1,...,m}{(rri, di, ti) | rri ✓ ri, di 2 G0, ti 2 P0}
where the first component {1, 2} is for the round number. The
initial states are I = {1} ⇥ ⇧i2{1,...,m}{(;,?,?)}.

The consumer agent ci has a set of actions Actci = {a?} [{apj | p j 2 P}. Intuitively, a? means that an agent does noth-
ing, and the action apj means that agent ci sends a request to
producer p j for its goods. The producer agent p j has a set
of actions Actpj = {a?} [{aB | B ✓ C, |B| b j}. Intuitively,

the action aB for B a subset of agents represents that agent p j
satisfies the requests from agents in B.

We use pseudocode to describe the transition relation. In
the first round, i.e., k = 1, it can be described as follows.

R1a. all consumer agents ci do the following sequential steps:
(a) if rri = ; then we let rri = ri. Intuitively, this repre-

sents that agent ci’s job is repeated.
(b) if di = ? then do the following: let di 2 rri, choose

an agent p j such that di = g j, and let ti = p j. In-
tuitively, if there is no current demand, then a new
demand di 2 rri is generated, and ci sends a request
to a producer agent p j who is producing goods di.

R1b. all producer agents p j execute action a?, and let k = 2.
In the second round, i.e., k = 2, it can be described as follows.

R2a. all producer agents p j do the following sequential steps:
(a) select a maximal subset B of agents such that B ✓
{ci | ti = p j} and |B| b j. Intuitively, from the
existing requests, the producer agent p j selects a
set of them according to its production capability.

(b) for all agents ci in B, let rri = rri \ {g j} and di =
ti = ?. Intuitively, if a demand di is satisfied, then
it is removed from rri and we let di = ti = ?.

R2b. all consumer agents execute action a?, and let k = 1.
We use “var = val”, for var a variable and val one of its

values, to denote an atomic proposition. Then the labelling
function ⇡ can be defined naturally over the states. The ob-
servation Oi will be discussed in Section 6.

We provide a simple instantiation of the system3. Let n = 2,
G = {g1, g2}, b1 = b2 = 1 (two agents produce goods one at
each time), m = 3, r1 = {g1}, r2 = {g2} and r3 = {g1, g2}
(three consumers with the required goods). From the initial
state s0 = (1, (;,?,?), (;,?,?), (;,?,?)), we may have the
following two states such that (s0, (a?, a?, ap1 , ap2 , ap1), s02) 2
T and (s02, (a{c1}, a{c2}, a?, a?, a?), s01) 2 T:(

s02 = (2, ({g1}, g1, p1), ({g2}, g2, p2), ({g1, g2}, g1, p1)), and
s01 = (1, ({},?,?), ({},?,?), ({g1, g2}, g1, p1))

3 Dynamic Normative Systems
The following is our new definition of normative systems.
Definition 1 A dynamic normative system of a multiagent
system M = (S , {Acti}i2Agt, {Li}i2Agt, {Oi}i2Agt, I,T, ⇡) is a tuple
NM = (Q, �n, �u, q0) such that Q is a set of normative states,
�n : S ⇥ Q ! P(Act) is a function specifying, for each envi-
ronment state and each normative state, a set of joint actions
that are disallowed, �u : Q ⇥ S ! Q is a function specifying
the update of normative states according to the changes of
environment states, and q0 is the initial normative state.

A (static) normative system in the literature can be seen
as a special case of our definition where the only normative
state is q0. In such case, we have Q = {q0}, �u(q0, s) = q0 for
all s 2 S , and can therefore write the function �n as function

3The instantiation is simply to ease the understanding of the defi-
nitions in Example 1 and 2. The conclusions for the example system
(i.e., Proposition 1, 2, 3, 4, 5) are based on the general definition.

1124

� : S ! P(Act). It is required that the function �n (and thus
�) does not completely eliminate agents’ joint actions, i.e.,
�n(s, q) ⇢ ⇧i2AgtLi(s) for all s 2 S and q 2 Q.

We give two dynamic normative systems.
Example 2 Let M be the multiagent system given in Exam-
ple 1. Let s1 and s2 range over those environmental states
such that k = 1 and k = 2, respectively.

The normative system N1
M = (Q1, �1n, �

1
u, q1

0) is such that:

• Q1 = ⇧p j2P{1, ...,m}, where each producer maintains
a number indicating the consumer whose requirement
must be satisfied in this normative state,
• �1n(s1, q) = ;, i.e., no joint actions are disallowed on s1,

and (aB1 , ..., aBn , a?, ..., a?) 2 �1n(s2, (y1, ..., yn)) if there
exists j 2 {1, ..., n} such that Bj ✓ C and cy j < Bj. Intu-
itively, for producer agent p j, an action aBj is disallowed
on the second round if Bj does not contain the consumer
cyj who is needed to be satisfied in this round.

• �1u(q, s2) = q and �1u((y1, ..., yn), s1) = (y01, ..., y
0
n) such

that y0j = (y j mod m) + 1 for j 2 {1, ..., n}; intuitively,
the normative state increments by 1 and loops forever.
• q1

0 = (1, ..., n), i.e., producer agents p j start from cj.
For the instantiation in Example 1, we have that
• Q1 = {1, 2, 3} ⇥ {1, 2, 3}, q1

0 = (1, 2),

• (aB1 , aB2 , a?, a?, a?) 2 �1n(s02, (1, 2)) if either B1 2
{;, {c2}, {c3}, {c2, c3}} or B2 2 {;, {c1}, {c3}, {c1, c3}},
• �1u((1, 2), s1) = (2, 3), �1u((2, 3), s1) = (3, 1).
We define another normative system N2

M = (Q2, �2n, �
2
u, q2

0)
by extending the number maintained by each producer into
a first-in-first-out queue so that the ordering between con-
sumers who have sent the requests matters. That is, we have
Q2 = ⇧p j2P({✏} [{i1...ik | k 2 {1, ...,m}, ix 2 C for 1
x k}) where the symbol ✏ denotes an empty queue, and
q2

0 = ⇧p j2P{✏} which means that producers start from empty
queues. The functions �2n and �2u can be adapted from N1

M, and
details are omitted here due to space limit.

The following captures the result of applying a normative
system on a multiagent system, which is essentially a product
of these two systems.
Definition 2 Let M be a multiagent system and NM a norma-
tive system on M, the result of applying NM on M is a Kripke
structure K(NM) = (S †, I†,T †, ⇡†) such that
• S † = S ⇥ Q is a set of states,
• I† = I ⇥ {q0} is a set of initial states,
• T † ✓ S † ⇥ S † is such that, for any two states (s1, q1) and

(s2, q2), we have ((s1, q1), (s2, q2)) 2 T † if and only if, (1)
there exists an action a 2 Act such that (s1, a, s2) 2 T
and a < �n(s1, q1), and (2) q2 = �u(q1, s2). Intuitively,
the first condition specifies the enabling condition to
transit from state s1 to state s2 by taking a joint action a
which is allowed in the normative state q1. The second
condition specifies that the transition relation needs to
be consistent with the changes of normative states.
• ⇡† : S † ! P(Prop) is such that ⇡†((s, q)) = ⇡(s).

Example 3 For the instantiation, in the structure K(N1
M), we

have ((s0, (1, 2)), (s02, (1, 2))), ((s02, (1, 2)), (s01, (2, 3))) 2 T †.
The latter is because (s02, (a{c1}, a{c2}, a?, a?, a?), s01) 2 T,
{c1} < {;, {c2}, {c3}, {c2, c3}}, and {c2} < {;, {c1}, {c3}, {c1, c3}}.

On the other hand, for a = (a{c1}, a{c3}, a?, a?, a?) and s001 =
(1, ({},?,?), ({g2}, g2, p2), ({g1},?,?)), we have (s02, a, s

00
1) 2

T but ((s02, (1, 2)), (s001 , (2, 3))) < T †. This is because, for p2, it
is required to make c2 as its current priority according to the
normative state, and cannot choose to satisfy c3 instead.

We remark that, the normative system, as many current for-
malisms, imposes hard constraints on the agents’ behaviour.
As stated in e.g., [Boella et al., 2006], social norms may be
soft constraints that agents can choose to comply with or not.
To accommodate soft social norms, we can redefine the func-
tion �n as �n : S ⇥ Q ⇥ Act ! U to assign each joint action
a cost utility for every agent, on each environment state and
normative state. With this definition, norms become soft con-
straints: agents can choose to take destructive actions, but are
encouraged to avoid them due to their high costs. The objec-
tive language to be introduced in the next section also needs
to be upgraded accordingly to express properties related to
the utilities. We leave such an extension as a future work.

4 Objective Language
To specify agents’ and the system’s objectives, we use tempo-
ral logic CTL [Clarke et al., 1999] whose syntax is as follows.

� ::= p | ¬� | �1 _ �2 | EX� | E(�1 U �2) | EG�

where p 2 Prop. Intuitively, formula EX� expresses that �
holds at some next state, E(�1 U �2) expresses that on some
path from current state, �1 holds until �2 becomes true, and
EG� expresses that on some path from current state, � always
holds. Other operators can be obtained as usual, e.g., EF� ⌘
E(True U �), AG� ⌘ ¬E(True U ¬�), AF� = ¬EG¬� etc.

A path in a Kripke structure K(NM) is a sequence s0s1... of
states such that (si, si+1) 2 T † for all i � 0. The semantics of
the language is given by a relation K(NM), s |= � for s 2 S †,
which is defined inductively as follows [Clarke et al., 1999]:

1. K(NM), s |= p if p 2 ⇡†(s),
2. K(NM), s |= ¬� if not K(NM), s |= �,
3. K(NM), s |= �1 _ �2 if K(NM), s |= �1 or K(NM), s |= �2,
4. K(NM), s |= EX� if there exists a state s0 2 S † such that

(s, s0) 2 T † and K(NM), s0 |= �,
5. K(NM), s |= E(�1 U �2) if there exists a path s0s1 . . . and

a number n � 0 such that s0 = s, K(NM), sk |= �1 for
0 k n � 1 and K(NM), sn |= �2,

6. K(NM), s |= EG� if there exists a path s0s1 . . . such that
s0 = s and K(NM), sk |= � for all k � 0.

The verification problem, denoted as K(NM) |= �, is, given
a multiagent system M, its associated normative system NM ,
and an objective formula �, to decide whether K(NM), s |= �
for all s 2 I†. The norm synthesis problem is, given a system
M and an objective formula �, to decide the existence of a
normative system NM such that K(NM) |= �. The norm recog-
nition problem will be defined in Section 6. For the measure-
ment of the complexity, we take the standard assumption that

1125

the sizes of the multiagent system and the normative system
are measured with the number of states, and the size of the
objective formula is measured with the number of operators.
Example 4 For the system in Example 1, interesting objec-
tives expressed in CTL may include

�1 ⌘
^

i2C

^

j2P
AG (ti = p j) EF di = ?)

which says that it is always the case that if there is a request
from a consumer ci to a producer p j (i.e., ti = p j), then the
request is possible to be satisfied eventually (i.e., di = ?), and

�2 ⌘
^

i2C

^

j2P
AG (ti = p j) AF di = ?)

which says that it is always the case that if there is a request
from a consumer ci to a producer p j, then on all the paths the
request will eventually be satisfied. Both �1 and �2 are live-
ness objectives that are important for an ecosystem to guar-
antee that no agent can be starving forever. The objective
�2 is stronger than �1, and their usefulness is application-
dependent. The following proposition shows that static nor-
mative systems are insu�cient to guarantee the satisfiability
of the objectives in this ecosystem.
Proposition 1 There exists an instance of a multiagent sys-
tem M such that, for all static normative systems NM, we have
that K(NM) 6|= �1 ^ �2.

The proof idea is based on the following simple case. As-
sume that there are one producer p1, such that b1 = 1,
and two consumers c1 and c2, such that r1 = r2 = {g1}.
There only exist the following three static normative sys-
tems which have di↵erent restrictions on an environment state
s2 = (2, ({g1}, g1, p1), ({g1}, g1, p1)): (Recall that q0 is the
only normative state in static normative systems.)
• N3

M is such that �3n(s2, q0) = {a{c1}}, i.e., c1 is not satisfied.

• N4
M is such that �4n(s2, q0) = {a{c2}}, i.e., c2 is not satisfied.

• N5
M is such that �5n(s2, q0) = ;, i.e., no restriction.

We can see that K(Nh
M) 6|= �1 for h 2 {3, 4} and K(N5

M) 6|= �2.
The former is because one of the agents is constantly ex-
cluded from being satisfied. For the latter, there exists an
infinite path s0(s2s1)1 such that s0 = (1, (;,?,?), (;,?,?))
is an initial state, s2 is given as above, and s1 =
(1, (;,?,?), ({g1}, g1, p1)) is the state on which consumer c1

i ’s
requirement is satisfied. On this path, the requirement from
c2

i is never satisfied. On the other hand, for the dynamic nor-
mative systems in Example 2, all the consumers’ requests can
be satisfied, so we have the following conclusion.
Proposition 2 Given a system M and a normative system N1

M
or N2

M, we have that K(Nh
M) |= �1 ^ �2 for h 2 {1, 2}.

The above example suggests that, to achieve some objec-
tives, we need dynamic normative systems to represent the
changes of social norms under di↵erent circumstances. Then,
another question may follow about the maximum number of
normative states. The dynamic system could be uninterest-
ing if the number of states can be infinite. Fortunately, in the
next section, we show with the complexity result that, for ob-
jectives expressed with CTL formulas, in the worst case, an
exponential number of normative states are needed.

5 The Complexity of Norm Synthesis
We have the following result for norm synthesis.
Theorem 1 The norm synthesis problem is EXPTIME-
complete, with respect to the sizes of the system and the ob-
jective formula. 4

Proof idea for the upper bound: EXPTIME Membership
We use an automata-theoretic approach. Given a system M,
we construct a Büchi tree automaton AM = (⌃,D,Q, �, q0,Q),
by a variant of the approach in [Kupferman and Vardi, 1996],
such that Q = S ⇥ {>, `,?} and � : Q⇥ ⌃⇥D! 2Q⇤ a transi-
tion function. Given a CTL formula � and a set D ⇢ N with a
maximal element k, there exists a Büchi tree automaton AD,¬�
that accepts exactly all the tree models of ¬� with branching
degrees in D. By [Vardi and Wolper, 1986], the size of AD,¬�
is O(2k·|�|). Then we show that the norm synthesis problem is
equivalent to an unsuccessful result from checking the empti-
ness of the product automaton AM ⇥ AD,¬�. The checking of
emptiness of Büchi tree automaton can be done in quadratic
time, so the norm synthesis can be done in exponential time.

Proof idea for the lower bound: EXPTIME Hardness
We reduce from the problem of a linearly bounded alter-
nating Turing machine (LBATM) accepting an empty input
tape, which is known to be EXPTIME-complete [Chandra
et al., 1980]. An alternating Turing machine AT is a tuple
(Q,�, ⌧, q0, g) where Q is a finite set of states, � is a finite set
of tape symbols including a blank symbol ?, ⌧ : Q ⇥ � !
P(Q ⇥ � ⇥ {�1,+1}) is a transition function, q0 2 Q is an ini-
tial state, g : Q ! {8,9, accept, re ject} specifies the type of
each state. An LBATM is an ATM which uses m tape cells
for a Turing machine description of size m.

We construct a multiagent system M(AT) of a single agent
9, such that the state space S consists of three sets (Q ⇥ L),
(Q ⇥ L ⇥ �), and (Q ⇥ L ⇥ L ⇥ �). Each transition (r, c, d) 2
⌧(q, b) of AT is simulated by three consecutive transitions in
M(AT), moving from states in one set to states in the next
set. The basic idea of the transition relation T is to use agent
9 to move on 9 states and treat movements on 8 states as
nondeterminism. Then the function �n of normative systems
can be imposed to restrict the behaviour of the agent 9.

For the objectives, we use formula � ^ AFacc, where � is
a CTL formula expressing the correct behaviour of the tran-
sition relation T with respect to ⌧, and AFacc expresses that
all paths are accepting. Then the norm synthesis problem on
M(AT) can be shown to be equivalent to the acceptance of
the automata AT . Therefore, it is EXPTIME hard.

6 Agent Recognition of Social Norms
For a multiagent system to be autonomous without human
intervention, it is important that it can maintain its function-
ality when new agents join or old agents leave. For a new
agent to join and function well, it is essential that it is capable
of recognising the social norms that are currently active. As
stated in the previous sections, the agent has only partial ob-
servation over the system state, and is not supposed to observe
the social norms. On the other hand, it is also unrealistic to

4Refer to http://arxiv.org/abs/1604.05086 for full proofs.

1126

assume that the agent does not know anything about the social
norms of the system it is about to join. Agent is designed to
have a set of prescribed capabilities and is usually supposed
to work within some specific scenarios. Therefore, the actual
situation can be that, the agent knows in prior that there are a
set of possible normative systems, one of which is currently
applied on the multiagent system. We remark that, assuming
a set of normative systems does not weaken the generality of
the setting, because Theorem 1 implies that there are a finite
number of possible normative systems (subject to a bisimula-
tion relation between Kripke structures). This situation natu-
rally leads to the following two new problems:
• (NC1) to determine whether the agent can always recog-

nise which normative system is currently applied; and
• (NC2) to determine whether the agent can find a way to

recognise which normative system is currently applied.
The successful answer to the problem NC1 implies the suc-
cessful answer to the problem NC2, but not vice versa. In-
tuitively, the successful answer of NC1 implies a high-level
autonomy of the system that the new agent can be eventu-
ally incorporated into the system no matter how it behaves.
We assume that once learned the social norms the new agent
will behave accordingly. If such an autonomy of the system
cannot be achieved, the successful answer of NC2 implies a
high-level autonomy of the agent that, by moving in a smart
way, it can eventually recognise the social norms.

We formalise the problems first. Let be a set of pos-
sible normative systems defined on a multiagent system,
Path(K(N)) be the set of possible paths of the Kripke struc-
ture K(N) for N 2 . We assign every normative system in
a distinct index, denoted as ind(N). This index is attached to
every path ⇢ 2 Path(K(N)), and let ind(⇢) = ind(N).

Let the new agent be x such that x < Agt and its observation
function be Ox. For any state (s, q) 2 S †, we define a projec-
tion function [(s, q) = s. So b⇢ is the projection of a path ⇢ of
a Kripke structure to the associated multiagent system. We
extend Ox to the paths of Kripke structure K(N) as follows:
Ox(⇢s†) = Ox(⇢) ·Ox(bs†) for ⇢ 2 Path(K(N)) and s† 2 S †. We
have Ox(✏) = ✏, which means when a path is empty, the ob-
servation is also empty. We also define its inverse O�1

x which
gives a sequence o of observations, returns a set of possible
paths ⇢ on which agent x’s observations are o, i.e.,

O�1
x (o) = {⇢ 2 Path(K(N)) | Ox(⇢) = o,N 2 }.

W.l.o.g., we assume that N0 2 is the active normative
system. Let N be the set of natural numbers, we have
Definition 3 NC1 problem is the existence of a number k 2 N
such that for all paths ⇢ 2 Path(K(N0)) such that |⇢| � k, we
have that ⇢0 2 O�1

x (Ox(⇢)) implies that ind(⇢0) = ind(⇢).
NC2 problem is the existence of a path ⇢ 2 Path(K(N0))

such that for all ⇢0 2 O�1
x (Ox(⇢)) we have ind(⇢0) = ind(⇢).

Intuitively, NC1 states that as long as the path is long enough,
the new agent can eventually know that the active normative
system is N0. That is, no matter how the new agent behaves,
it can eventually recognise the current normative system. On
the other hand, NC2 states that such a path exists (but not
necessarily for all paths). That is, to recognise the normative
system, the new agent needs to move smartly.

Example 5 For the system in Example 1, we assume a new
consumer agent cv such that v = m + 1. Also, we define
Ocv (s) = {ci | ci 2 C, ti(s) = tv(s) , ?} for all s 2 S . In-
tuitively, the agent cv keeps track of the set of agents that are
currently having the same request. Unfortunately, we have

Proposition 3 There exists an instance of system M such that
under the set = {N1

M ,N
2
M} of normative systems, both NC1

and NC2 are unsuccessful.

This can be seen from a simple case where there are a sin-
gle producer p1 with b1 = 1 and a set of consumers C such
that ri = {g1} for all ci 2 C. For the initial state, every con-
sumer sends its request to p1, so {ci | ti = p1} = C. For
any path ⇢1 of K(N1

M) and ⇢2 of K(N2
M), we have b⇢1 = b⇢2 =

s0s2s1
1s2...sm

1 s2sv
1s2s1

1... where s0 = (1, (;,?,?), ..., (;,?,?)),
s2 = (2, ({g1}, g1, p1), ..., ({g1}, g1, p1)), and si

1 is di↵erent with
s2 in ci’s local state, e.g., s1

1 = (1, ({},?,?), ..., ({g1}, g1, p1)).
And therefore Ocv (⇢1) = Ocv (⇢2) = ;C(C \ {c1})C(C \ {c2})...,
i.e., the agent cv’s observations are always the same5. That is,
the new agent cv finds that for ⇢1, the single path on K(N1

M),
there are ⇢2 2 O�1

cv
(Ocv (⇢1)) and ind(⇢1) , ind(⇢2). Therefore,

neither NC1 nor NC2 can be successful in such a case.

The reasons for the above result may come from either the
insu�cient capabilities of the agent or the designing of nor-
mative systems. We explain this in the following example.

Example 6 First, consider that we increase the capabilities
of the new agent by updating the rule R2b in Section 2.

R2b’. the new agent cv may cancel its current request by letting
dv = tv = ?; all other consumer agents execute action
a?; and let k = 1.

With this upgraded capabilities of the new agent, the NC2
can be successful. The intuition is that, by canceling and re-
requesting for at least twice, the ordering of consumer agents
whose requests are satisfied can be di↵erent in two normative
systems: with N2

M, there are other agents ci between cm and
cv, but with N1

M, their requests are always satisfied consecu-
tively. Note that, by its new capabilities, cv can always choose
a producer agent which have more than 2 existing and future
requests (Assuming that n ⌧ m, which is usual for a business
ecosystem).

Proposition 4 With the new rule R2b’, the NC2 problem is
successful on system M and the set = {N1

M ,N
2
M}.

However, the NC1 problem is still unsuccessful, because
the agent cv may not move in such a smart way. For this, we
replace N1

M with N6
M = (Q1, �1n, �

6
u, q1

0) such that

• �6u(q, s2) = q and �6u((y1, ..., yn), s1) = (y01, ..., y
0
n), s.t. y0j =

((y j + 1) mod m) + 1 for j 2 {1, ..., n}. Intuitively, the
normative state increments by 2 (modulo m).

Proposition 5 Both NC1 and NC2 problems are successful
on system M and the set = {N2

M ,N
6
M}.

5We reasonably assume that, for N1
M , when a producer sees cv, it

will adjust its range in normative states from {1, ...,m} to {1, ...,m, v}.

1127

7 The Complexity of Norm Recognition
The discussion in the last section clearly shows that, the two
norm recognition problems are non-trivial. It is therefore use-
ful to study if there exist e�cient algorithms that can decide
them automatically. In this section, we show a somewhat sur-
prising result that the determination of NC1 problem can be
done in PTIME, while it is PSPACE-complete for NC2 prob-
lem. Assume that the size of the set is measured over both
the number of normative systems and the number of norma-
tive states. We have the following conclusions.

Theorem 2 The NC1 problem can be decided in PTIME,
with respect to the sizes of the system and the set .

The proof idea is as follows. The unsuccessful answer to
the NC1 problem can be obtained by the existence of two
infinite paths ⇢ 2 Path(K(N0)) and ⇢0 2 O�1

x (Ox(⇢)) such
that ind(⇢0) , ind(⇢). To check this, we construct a product
system K(N0) ⇥ K(N1) for N1 2 \ {N0}. The product sys-
tem synchronises the behaviour of the two Kripke structures
K(N0) and K(N1) such that the observations are always the
same. Then the existence of an infinite path in the product
system is equivalent to the existence of ⇢ and ⇢0. Further, the
existence of an infinite path is equivalent to the existence of
reachable strongly connected components. The latter can be
decided in PTIME by the Tarjan’s algorithm [Tarjan, 1972].

Theorem 3 The NC2 problem is PSPACE-complete, with re-
spect to the sizes of the system and the set .

Proof idea for the upper bound: PSPACE Membership
The upper bound is obtained by having a nondeterministic
algorithm which takes a polynomial size of space, i.e., it
is in NPSPACE=PSPACE. The algorithm starts by guessing
a set of initial states of the structures {K(N) | N 2 } on
which agent x has the same observation. It then continuously
guesses the next set of states such that they are reachable
in one step from some state in the current set and on which
agent x has the same observation. If this guess can be done
infinitely then the NC2 problem is successful. This infinite
number of guesses can be achieved with a finite number of
guesses, by adapting the approach of LTL model checking.

Proof idea for the lower bound: PSPACE Hardness
It is obtained by a reduction from the problem of deciding if,
for a given nondeterministic finite state automaton A over an
alphabet ⌃, the language L(A) is equivalent to the universal
language ⌃⇤. Let A = (Q, q0, �, F) be an NFA such that Q is
a set of states, q0 2 Q is an initial state, � : Q ⇥ ⌃ ! P(Q)
is a transition function, and F ✓ Q is a set of final states.
We construct a system M(A) which consists of two subsys-
tems, one of them simulates the behaviour of A and the other
simulates the behaviour of the language ⌃⇤. The subsystems
are reachable from an initial state s0 by two actions a1 and
a2 respectively. On the system M(A), we have two normative
systems whose only di↵erence is on the state s0: N0 disallows
action a1 and N1 disallows action a2. Therefore, the univer-
sality of the NFA A is equivalent to the unsuccessful answer
to the NC2 problem on M(A) and = {N0,N1}.

8 Related Work
Normative multiagent systems have attracted many research
interests in recent years, see e.g., [Boella et al., 2006; Criado
et al., 2011] for comprehensive reviews of the area. Here we
can only review some closely related work.
Norm synthesis for static normative systems. As stated,
most current formalisms of normative systems are static.
[Shoham and Tennenholtz, 1995] shows that this norm syn-
thesis problem is NP-complete. [Christelis and Rovatsos,
2009] proposes a norm synthesis algorithm in declarative
planning domains for reachability objectives, and [Morales et
al., 2013] considers the on-line synthesis of norms. [Bulling
and Dastani, 2011] considers the norm synthesis problem by
conditioning over agents’ preferences, expresses as pairs of
LTL formula and utility, and a normative behaviour function.
Changes of normative system. [Knobbout et al., 2014] rep-
resents the norms as a set of atomic propositions and then em-
ploys a language to specify the update of norms. Although the
updates are parameterised over actions, no considerations are
taken to investigate, by either verification or norm synthesis,
whether the normative system can be imposed to coordinate
agents’ behaviour to secure the objectives of the system.
Norm recognition. Norm recognition can be related to the
norm learning problem, which employs various approaches,
such as data mining [Savarimuthu et al., 2013] and sampling
and parsing [Oren and Meneguzzi, 2013; Cranefield et al.,
2015], for the agent to learn social norms by observing other
agents’ behaviour. On the other hand, our norm recognition
problems are based on formal verification, aiming to decide
whether the agents are designed well so that they can recog-
nise the current normative system from a set of possible ones.
We also study the complexity of them.
Application of social norms Social norms are to regulate
the behaviour of the stakeholders in a system, including so-
ciotechnical system [Chopra and Singh, 2016] which has both
humans and computers. They are used to represent the com-
mitments (by e.g., business contracts, etc) between humans
and organisations. The dynamic norms of this paper can be
useful to model more realistic scenarios in which commit-
ments may be changed with the environmental changes.

9 Conclusions
In the paper, we first present a novel definition of normative
systems, by arguing with an example that it can be a necessity
to have multiple normative states. We study the complexity of
two autonomy issues related to normative systems. The de-
cidability (precisely, EXPTIME-complete) of norm synthesis
is an encouraging result, suggesting that the maximum num-
ber of normative states is bounded for CTL objectives. For
the two norm recognition subproblems, one of them is, sur-
prisingly, in PTIME and the other is PSPACE-complete. Be-
cause the first one suggests a better level of autonomy, to see
if an agent can recognise the social norms, we can deploy a
PTIME algorithm first. If it fails, we may apply a PSPACE
algorithm to check the weaker autonomy.

Acknowledgement The authors would like to thank the
reviewers for their constructive comments which are help-

1128

ful in improving the paper. The authors are supported by
ERC Advanced Grant VERIWARE, EPSRC Mobile Auton-
omy Programme Grant EP/M019918/1, National Natural Sci-
ence Foundation of China Grant 61572234 and 61472369,
Fundamental Research Funds for the Central Universities of
China Grant 21615441, and ARC Grant DP150101618.

References
[Ågotnes and Wooldridge, 2010] Thomas Ågotnes and

Michael Wooldridge. Optimal social laws. In AAMAS
2010, pages 667–674, 2010.

[Ågotnes et al., 2007] Thomas Ågotnes, Wiebe van der
Hoek, and Michael Wooldridge. Normative system games.
In AAMAS 2007, 2007.

[Boella et al., 2006] Guido Boella, Leendert van der Torre,
and Harko Verhagen. Introduction to normative multiagent
systems. Computational and Mathematical Organization
Theory, 12(2-3):71–79, 2006.

[Bulling and Dastani, 2011] Nils Bulling and Mehdi Das-
tani. Verifying normative behaviour via normative mecha-
nism design. In IJCAI 2011, pages 103–108, 2011.

[Chalupsky et al., 2001] Hans Chalupsky, Yolanda Gil,
Craig A. Knoblock, Kristina Lerman, Jean Oh, David V.
Pynadath, Thomas A. Russ, and Milind Tambe. Electric
elves: Applying agent technology to support human
organizations. In IAAI 2001, pages 51–58, 2001.

[Chandra et al., 1980] Ashok K. Chandra, Dexter C. Kozen,
and Larry J. Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1980.

[Chopra and Singh, 2016] Amit K. Chopra and Munindar P.
Singh. From social machines to social protocols: Soft-
ware engineering foundations for sociotechnical systems.
In WWW 2016, pages 903–914, 2016.

[Christelis and Rovatsos, 2009] George Christelis and
Michael Rovatsos. Automated norm synthesis in an
agent-based planning environment. In AAMAS 2009,
pages 161–168, 2009.

[Clarke et al., 1999] E. M. Clarke, O. Grumberg, and
D. Peled. Model Checking. The MIT Press, 1999.

[Cranefield et al., 2015] Stephen Cranefield, Tony
Savarimuthu, Felipe Meneguzzi, and Nir Oren. A
bayesian approach to norm identification (extended
abstract). In AAMAS 2015, pages 1743–1744, 2015.

[Criado et al., 2011] N. Criado, E. Argente, and V. Botti.
Open issues for normative multi-agent systems. AI Com-
munications, 2011.

[Fagin et al., 1995] R. Fagin, J. Halpern, Y. Moses, and
M. Vardi. Reasoning About Knowledge. MIT Press, 1995.

[Fisher et al., 2013] Michael Fisher, Louise Dennis, and
Matt Webster. Verifying autonomous systems. Commu-
nications of the ACM, 56(9):84–93, 2013.

[Knobbout et al., 2014] Max Knobbout, Mehdi Dastani, and
John-Jules Ch. Meyer. Reasoning about dynamic norma-
tive systems. In JELIA 2014, pages 628–636, 2014.

[Kupferman and Vardi, 1996] Orna Kupferman and
Moshe Y. Vardi. Module checking. In 8th Inter-
national Conference on Computer Aided Verification
(CAV1996), pages 75–86, 1996.

[Morales et al., 2013] Javier Morales, Maite Lopez-
Sanchez, Juan A. Rodriguez-Aguilar, Michael
Wooldridge, and Wamberto Vasconcelos. Automated
synthesis of normative systems. In AAMAS 2013, pages
483–490, 2013.

[Oren and Meneguzzi, 2013] Nir Oren and Felipe
Meneguzzi. Norm identification through plan recog-
nition. In COIN 2013@AAMAS, 2013.

[Savarimuthu et al., 2013] B. T. R. Savarimuthu, S. Crane-
field, M. A. Purvis, and M. K. Purvis. Identifying prohi-
bition norms in agent societies. Artificial intelligence and
law,, 21(1):1–46, 2013.

[Shoham and Tennenholtz, 1992] Yoav Shoham and Moshe
Tennenholtz. On the synthesis of useful social laws for
artificial agent societies. In AAAI 1992, pages 276–281,
1992.

[Shoham and Tennenholtz, 1995] Yoav Shoham and Moshe
Tennenholtz. On social laws for artificial agent societies:
o↵-line design. Artificial Intelligence, 73(1-2):231–252,
1995.

[Tarjan, 1972] Robert Endre Tarjan. Depth-first search and
linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[van der Hoek et al., 2007] Wiebe van der Hoek, Mark
Roberts, and Michael Wooldridge. Social laws in alter-
nating time: e↵ectiveness, feasibility, and synthesis. Syn-
these, 156(1):1–19, 2007.

[Vardi and Wolper, 1986] Moshe Y. Vardi and Pierre Wolper.
Automata-theoretic techniques for modal logics of pro-
grams. J. Comput. Syst. Sci., 32(2):183–221, 1986.

[Wooldridge and van der Hoek, 2005] Michael Wooldridge
and Wiebe van der Hoek. On obligations and normative
ability: Towards a logical analysis of the social contract.
Journal of Applied Logic, 3:396–420, 2005.

1129

