
Reconfigurability in Reactive Multiagent Systems

Xiaowei Huang1,2, Qingliang Chen1, Jie Meng3, Kaile Su1,4

1Department of Computer Science, Jinan University, China
2Department of Computer Science, University of Oxford, United Kingdom

3Department of Marketing and Management, Macquarie University, Australia
4Institute for Integrated and Intelligent Systems, Gri�th University, Brisbane, Australia

Abstract
Reactive agents are suitable for representing phys-
ical resources in manufacturing control systems.
An important challenge of agent-based manufac-
turing control systems is to develop formal and
structured approaches to support their specification
and verification. This paper proposes a logic-based
approach, by generalising that of model checking
multiagent systems, for the reconfigurability of re-
active multiagent systems. Two reconfigurability
scenarios are studied, for the resulting system being
a monolithic system or an individual module, and
their computational complexity results are given.

1 Introduction
Industrie 4.0 [Ind, 2011], the German vision for the future of
manufacturing, recognises modular structured smart factories
as one of the key ingredients. Smart factories use information
and communications technologies to digitise their processes
and reap huge benefits in the form of improved quality, lower
costs, and increased e�ciency [Zaske, 2015]. Agent-based
systems have been applied to solve complex manufacturing
system problems including manufacturing planning, schedul-
ing and control, and supply chain management [Tang and
Wong, 2005]. In particular, agents can represent physical
resources such as machine tools, robots, auto-guided vehi-
cles, etc [Paulo Leitão, 2009]. However, the current devel-
opment of such manufacturing control systems starts from
simple graphical specifications and relies on the code devel-
opers to take care of the implementation details. This devel-
opment approach not only is ine�cient (in terms of the time
and costs of the development) but also raises concerns about
the reliability, performance, reusability, and reconfigurability
of the resulting solution. Therefore, as pointed out in [Marik
and McFarlane, 2005; Paulo Leitão, 2009], an important chal-
lenge for agent-based manufacturing control systems is to de-
velop formal and structured approaches to support their spec-
ification and verification.

In this paper, we introduce a logic-based approach for the
specification and verification of manufacturing control sys-
tems (MCS), by generalising the existing approach of model
checking multiagent systems. An MCS is a multiagent sys-
tem, i.e., there are a set of agents interacting and communi-

cating in an environment. In an MCS, each agent has lim-
ited, i.e., incomplete, information about the system by e.g.,
sensing devices. For instance, robotic arms fetching the same
raw materials from a distributor robot are not supposed to ob-
serve the status (i.e., ready to fetch or not) of each other. The
other characteristics of the agents in an MCS is reactivity, i.e.,
they behave in the way of reacting to the stimulus from the
outside world [Tang and Wong, 2005]. Therefore, no mem-
ory is needed. Both incomplete information and reactivity
of agents are not new in the area of model checking mul-
tiagent systems, with theoretical results [Fagin et al., 1995;
Alur et al., 2002] and prototype verification softwares [Gam-
mie and van der Meyden, 2004; Lomuscio et al., 2009].

The paper addresses a new challenge in the development of
MCSs and Industrie 4.0 [Nikolaus, 2014], i.e., reconfigurable
robots, which are robots whose modules can be connected in
di↵erent ways to form di↵erent robots in terms of size, shape,
or function [Chen et al., 2006; Kasper Støy et al., 2010;
Dennis et al., 2014]. Reconfigurable manufacturing systems
can quickly adjust their production capacity and functional-
ity in response to sudden market changes or intrinsic system
change [Koren et al., 2003]. In particular, the paper focuses
on the decision problem for reconfigurable robots, called re-
configurability in the paper. Informally, the reconfigurability
is, given a set of reactive robots, to determine whether they
can form a composite robot with designated functionalities.

Two di↵erent development scenarios are considered. The
first is the scenario in which the resulting system is a mono-
lithic system1. The reconfigurability is to determine the exis-
tence of agents’ reactive behaviour to satisfy their local func-
tionalities and the system’s global functionalities. Follow-
ing the success of model checking [Clarke et al., 1999], a
logic language is employed to describe the functionalities, by
extending the temporal epistemic logic CTLK [Fagin et al.,
1995] with the expressiveness to refer to agents’ reactive be-
haviour directly in the formula. We show that the complexity
of the problem is NP-complete.

The second is the scenario where the resulting system is an
individual module of a bigger system. The resulting system
has a set of nondeterministic transitions, called environment
transitions in the paper, which are to accept interactions from

1To di↵erentiate component robots with the resulting robot, we
write agents for component robots and system for the resulting robot.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

315

other modules of the bigger system. The reconfigurability
is to determine the existence of agents’ reactive behaviour
in satisfying the required functionalities, under all possible
interactions. We show that the complexity of the problem is
EXPTIME-complete.

2 Model Checking Multiagent Systems
A multiagent system consists of a set Agt = {1, ..., n} of agents
running in an environment [Fagin et al., 1995]. At each time,
each agent is in some local state. The environment, regarded
as a special agent e, is in some environment state, which keeps
track of everything relevant to the system but not recorded in
agents’ local states. A global state s is a tuple (se, s1, ..., sn)
consisting of an environment state se and a local state si for
each agent i. Let Li, for i 2 Agt, be a set of agent i’s local
states, and Le be a set of environment states.

Each agent i has a nonempty set Actsi of local actions.
Let Acts = ⇧i2AgtActsi be a set of joint actions. The envi-
ronment runs a protocol Prote = (Le, te,Te, {Pi}i2Agt) where
te 2 Le is an initial state2, Te : Le ⇥ Acts ! P(Le) \ {;}
is a labeled transition function updating environment states
according to the current state and agents’ joint action, and
Pi : Le ! Oi provides the perception/observation of agent
i on the environment states. Each agent i runs a proto-
col Proti = (Li,Actsi,LActi, ti,Ti), where function LActi :
Li ⇥ Oi ! P(Actsi) \ {;} defines for each local state and ob-
servation a nonempty set of actions that can be taken by agent
i, ti 2 Li is an initial local state, and Ti : Li ⇥ Oi ⇥ Actsi !
P(Li) \ {;} is a labeled transition function. Let V be a finite
set of boolean variables. Formally3, a multiagent system is a
tuple M = (S , t,T, {⇠i}i2Agt, ⇡,F) where

1. S ✓ Le ⇥ ⇧i2AgtLi is a set of global states,
2. t = (te, t1, ..., tn) is an initial global state,
3. T ✓ S ⇥ S is a transition relation such that for all

states s = (le, l1, ..., ln) and s0 = (l0e, l01, ..., l
0
n), we have

(s, s0) 2 T i↵ there exist local actions a1, ..., an such
that for all i 2 Agt, there are ai 2 LActi((li, Pi(le))) and
(li, Pi(le), ai, l0i) 2 Ti, and for the environment, there is
(le, (a1, ..., an), l0e) 2 Te,

4. ⇠i✓ S ⇥S is an indistinguishable relation of agent i such
that for all states s = (le, l1, ..., ln) and s0 = (l0e, l01, ..., l

0
n),

we have (s, s0) 2⇠i i↵ li = l0i and Pi(le) = Pi(l0e),
5. ⇡ : S ! P(V) assigns each global state with a set of

boolean variables in V , and
6. F ✓ S is a Büchi acceptance condition.

A path in M is a finite or infinite sequence s0s1s2... such that
(si, si+1) 2 T for all i � 0. An infinite path s0s1s2... is fair with

2For both the environment and the agents, we assume a single
initial state. This is to ease the technicalities that will be employed
in the complexity proofs. However, the results of this paper can be
generalised to the case where there are a set of initial states.

3Although simple, this formalisation is su�ciently expressive in
modelling MCSs by engaging certain levels of abstractions. For ex-
ample, the sensing results of robots can be modelled by agents’ ob-
servations, and the communication and interactions between robots
can be modelled by agents’ joint actions.

respect to F if there are infinitely many indices j for which
s j 2 F . Let rch(M) be the set of fair reachable states of M,
i.e., the set of states sn (for some n) such that there exists a
fair path s0s1...snsn+1... with s0 = t the initial state.

The language CTLK(V, Agt) has the syntax:

� ::= v | ¬� | �1 _ �2 | EX� | E(�1U�2) | EG� | Ki�

where v 2 V and i 2 Agt. Other operators are defined as
usual, e.g., AF� = ¬EG¬� and AG� = ¬E(true U¬�). The
semantics of the language is given by a satisfaction relation
M, s |= �, where s 2 rch(M) is a fair reachable state. This
relation is defined inductively as follows:

1. M, s |= v if v 2 ⇡(s),
2. M, s |= ¬� if not M, s |= �,
3. M, s |= �1 _ �2 if M, s |= �1 or M, s |= �2,
4. M, s |= EX� if there exists s0 2 rch(M) such that (s, s0) 2

T and M, s0 |= �,
5. M, s |= E(�1U�2) if there exists a fair path s0s1 . . . sn . . .

such that s0 = s, M, sk |= �1 for 0  k  n � 1 and
M, sn |= �2,

6. M, s |= EG� if for there exists a fair path s0s1 . . . such
that s0 = s and M, sk |= � for all k � 0,

7. M, s |= Ki� if for all s0 2 rch(M) with (s, s0) 2⇠i we
have M, s0 |= �.

Given a multiagent system M and a CTLK(V, Agt) formula
�, the model checking problem, written as M |= �, is to decide
whether M, t |= �. It is shown [Clarke et al., 1999] that, if we
measure the problem with the number |S | of states and the
length |�| of formula, then it is PTIME-complete.
Example 1 We consider a typical MCS in which a (distrib-
utor) robot distributes semi-finished products to a set of (re-
ceiver) robots. Robots communicate with each other by wire-
less signals and self-organise themselves to ensure the suc-
cess of this distribution task. The factory floor has limited
space, so that at every time only one receiver can be allowed
to access the distributor for the product.

In the system, each receiver i may be in one of the three
states {wi, ti, ci}, which represents that it is waiting (i.e., it is
doing other things irrelevant to the product), trying (i.e., it
has decided to access the distributor as its next job), or col-
lecting (i.e., it is accessing the distributor), respectively. Two
signals ri and di are designed for each receiver i to commu-
nicate with the distributor. The signal ri = 1 represents that
the receiver i is notifying the distributor with its intention to
get the product, and the signal di = 1 represents that the dis-
tributor is notifying the receiver i that it is allowed to access.
The distributor, modelled by the environment, may be in one
of the two states { f , e}, representing that it is full (i.e., there is
a receiver allowed to access) or empty. We let Li = {wi, ti, ci}
and Le = { f , e} ⇥ ⇧i2Agt{ri, di}.

We define transition relations Ti and Te by describing the
e↵ects of actions. The receiver i has a set {ai,>, ai,t, ai,c, ai,w}
of actions. At state wi, it can take either ai,> to stay still or
ai,t to start trying. The e↵ects of ai,t include turning the state
into ti and letting the signal ri = 1. At state ti, it can take
either ai,> to stay still or ai,c to start accessing the materials.

316

The e↵ect of ai,c is turning the state into ci. At state ci, it can
take either ai,> to stay still or ai,w to leave the distributor. The
e↵ects of ai,w include turning the state into wi and letting the
signal di = 0. For the distributor, at state e, it nondeterminis-
tically chooses one of the receivers i that has sent a request,
changing its own state into f , and letting di = 1 and ri = 0.
The distributor does nothing if it is at state f . Whenever a
receiver takes action ai,w, the distributor will update its state
from f to e.

For the observation function Pi, we assume that receiver i
can observe the signals ri and di. Initially, we have wi as the
state of all receivers i, e as the state of the distributor, and
ri = 0 and di = 0 as the states of the signals. There is no
fairness condition required for the system and the labelling
function is defined by directly referring to the states of the
receivers, the distributor, or the signals.

For such a system, the following specification formulas de-
scribe a set of criteria for the success of the distribution task:
• �1 ⌘ Vi2Agt AG(ti) AFci) expresses that once a re-

ceiver starts trying, it can eventually get the product,
• �2 ⌘ Vi2Agt AGAF¬ci expresses that none of the re-

ceivers can access the distributor without exiting, and
• �3 ⌘ AG

V
i2Agt
V

j2Agt(i , j) ¬ci _ ¬c j) expresses
that there will not be the case in which two receivers are
allowed to access the distributor at the same time.
• �4 ⌘ AG

V
i2Agt(di) Ki

V
j2Agt(j , i) ¬di)) expresses

that once a receiver is given the access, it knows that
none of the other receivers has been given the access.

However, it can be checked that none of the above specifica-
tion formulas can be satisfiable on the described system.

3 Reconfigurability vs. Model Checking MAS
The example in the previous section shows an insu�ciency of
the approaches of model checking multiagent systems in han-
dling interesting examples in smart factories. The techniques
of model checking multiagent systems assume a closed sys-
tem in which the behaviour of the agents and the environment
is completely specified with their respective protocols. There-
fore, the system in Example 1 is regarded as under-specified
because only the available actions of the agents and their ef-
fects are described. To have a meaningful use of the model
checking techniques, more details are needed to complete the
protocols, including the following two aspects:
A1. the conditions (or guards, etc) for the agents to take local

actions, that is, the agents can take the actions only if
their respective conditions are satisfied; for example, in
Example 1, conditions may be needed for action ai,c, and
di↵erent agents may have di↵erent conditions.

A2. the interaction of the system, as a module of a bigger
system, with other modules; for example, in Example 1,
a resolution of the nondeterminism of the distributor on
choosing a specific receiver to satisfy its request may
exist if there is an interaction with other modules.

While the above discussion suggests that we need to com-
plete the under-specified protocols, it is arguable that, for the

reconfiguration of reactive multiagent systems, the informa-
tion about the available actions and their e↵ects has been
su�cient. These are exact information that we can expect for
the component robots from their factory specifications. Based
on these information, a reconfiguration is to find a way for the
robots to be connected and communicated so that the result-
ing system can satisfy some objectives.

An important implication from the above arguments is that,
for reconfiguration, instead of regarding the protocols as de-
scribing the actual behaviour, it is more reasonable to assume
that the protocols describe the allowed or legal behaviour ac-
cording to the robots’ factory specifications. Each reconfigu-
ration can then be concretised as a set of restrictions on the le-
gal behaviour. For the studying of complexity, we consider a
decision-problem called reconfigurability, which can be gen-
erally described as follows: given a set of reactive robots, it
is to determine the existence of restrictions on their legal be-
haviour with respect to the objectives.

Formal definition of reconfigurability, to be given later, is
scenario dependent. Here we explain the restrictions which
will be imposed on the protocols. We utilise an intuition that
the restrictions can be regarded as the inputs from the outside
world and there are agents and environment behind their re-
spective protocols to conduct such inputs. At each time, an
input to a protocol is a (nonempty) subset of the allowed be-
haviour. In the following two sections, we will discuss two
variants of the reconfigurability based on di↵erent scenarios.

4 Reconfigurability of A Monolithic System
The first variant assumes that agents have inputs via config-
settings (to be defined below) and the environment does not
have additional input. This is to model the scenario in which
we are working with a monolithic system, so that we need
only take care of the organisation of agents’ behaviour and
assume that the interactions with other systems have been
completely specified in the environment protocol.

An agent’s inputs are defined with a set of config-settings,
each of which defines whether some action may be selected
to take based on its currently available local information, i.e.,
agent’s local state and current observation4. Formally, for i 2
Agt and a 2 Actsi, a config-setting xi,a : Li ⇥ Oi ! {0, 1} is a
characteristic function over Li ⇥ Oi. Given xi,a, the function
LActi is lifted into LActi[xi,a] : Li ⇥ Oi ! P(Actsi) such that,
b 2 LActi[xi,a]((si, oi)) for some state si 2 Li and observation
oi 2 Oi if one of the following conditions holds:

1. a = b, b 2 LActi((si, oi)) and xi,a((si, oi)) = 1.
2. a , b and b 2 LActi((si, oi)).

Intuitively, action a remains legal on state si and observation
oi if (si, oi) is permitted by xi,a. These can be easily extended
to work with a set of local actions A ✓ Si2Agt Actsi and a set
of config-settings XA = {xi,a | i 2 Agt, a 2 A \ Actsi}. The
function LActi is lifted into LActi[XA] such that LActi[XA] =
(LActi[x])[XA \ {x}] for any x 2 XA , ; and LActi[;] = LActi.
Furthermore, we define multiagent system M[XA] by lifting
functions LActi for i 2 Agt according to XA. Note that, for a

4This definition is in line with the capability of reactive agents,
which works in the stimulus-response way.

317

specific local information (si, oi), there can be more than one
actions a such that xi,a(si, oi) = 1.

Given a multiagent system M, a set A ✓ Si2Agt Actsi of
local actions, and a CTLK(V, Agt) formula �, the reconfig-
urability problem, written as M, A |= �, is to decide whether
there exist config-settings XA = {xi,a | a 2 A \ Actsi, i 2 Agt}
such that M[XA] |= �. The complexity of the problem is mea-
sured over the number |S | of states, the number |Si2Agt Actsi|
of local actions, and the length |�| of formula. We have the
following conclusion.

Theorem 1 The reconfigurability with config-settings is NP-
complete for CTLK(V, Agt).

We have a nondeterministic algorithm that runs in polynomial
time. For each action a 2 A such that a 2 Actsi, the algorithm
guesses a set of local states for xi,a. The system M is then
updated into M[XA], on which a model checking procedure is
held for the formula �. Both the updating of system and the
model checking can be done in polynomial time.

We note that, the problem has PTIME reductions to other
problems that can be solved by SAT solvers or ASP solvers.

Example 2 (Continue with Example 1) We let A = {ai,c | i 2
Agt} be the set of local actions, and � ⌘ �1 ^ �2 ^ �3 ^ �4 be
a CTLK(V, Agt) formula. Then with expression M, A |= �, we
can check the existence of conditions for agents to take action
ai,c, such that after imposing such conditions on agents’ pro-
tocols, the formula � is satisfiable. It can be verified that, this
expression holds for systems with 2 agents.

The above example shows the advantage of reconfiguration
with config-settings over model checking in that, it can work
directly with under-specified agents’ protocols and automati-
cally verify the formulas without specifying the details of the
aspect A1 (given in Section 3) for agents’ protocols.

In the following, we extend the language CTLK(V, Agt)
into CTLK(V, Agt,

S
i2Agt Actsi), which has the syntax:

� ::= xi,a | v | ¬� | �1 _ �2 | EX� | E(�1U�2) | EG� | Ki�

where v 2 V , i 2 Agt, and a 2 Actsi. The satisfaction relation
of the new construct xi,a is defined as follows.

1. M, s |= xi,a if xi,a((li, Pi(le))) = 1 for s = (le, l1, ..., ln)

As will explain in Example 3, xi,a, representing a set of states
as that of atomic propositions, can be regarded as an atomic
proposition of the resulting system (i.e., system imposed with
reconfiguration) that are relevant to the actions. The reconfig-
urability problem is defined the same as before. The follow-
ing conclusion shows that the additional expressiveness from
the new construct comes for free.

Theorem 2 The reconfigurability with config-settings is NP-
complete for CTLK(V, Agt,

S
i2Agt Actsi).

For the algorithm, we note that checking M[XA], s |= xi,a
can be done in linear time. Now we show the usefulness of
the additional expressiveness.

Example 3 (Continue with Example 2) Besides those speci-
fication formulas in Example 1, we may be interested in

• �5 ⌘ AG(xi,ai,c , KiAX
V

j2Agt(j , i) ¬c j)), which
expresses that whenever receiver i is permitted to take
action ai,c, it knows that there is no collision with other
receivers in accessing the distributor, and vice versa.

• �6 ⌘ AG(xi,ai,c) AXci), which expresses that when-
ever receiver i is permitted to take action ai,c, it will be
accessing the distributor in the next state.

• �7 ⌘ AG(xi,ai,c) AF¬xi,ai,c), which expresses that re-
ceiver i cannot always be accessing the distributor.

In �5, �6, �7, we use the construct xi,ai,c to directly refer to the
behaviour of the receiver i in the resulting system. The ben-
efit of writing such a construct xi,a directly in a formula is
that, while there may exist many possible reconfigurations,
we can identify some of them that we are interested in by
requiring the resulting system to satisfy formulas with con-
structs xi,ai,c . Recall that, xi,ai,c is a characteristic function over
Li⇥Oi, which means that it can be seen as a representation of
a set of states on which action ai,c is allowed to be taken by
agent i. For example, with �6, the resulting system should sat-
isfy the following: on every state where it is allowed to take
action ai,c, agent i will take that action. Note that, this prop-
erty cannot be expressed with usual CTLK(V, Agt) formulas,
in particular, it is not the same as the formula AG(ti) AXci).

5 Reconfigurability of A Module
In the first variant, the environment’s behaviour is completely
determined by its protocol, that is, given an environment state
le and a joint action a, the set of possible next environment
states is N(le, a) = {l0e | (le, a, l0e) 2 Te}. For the second re-
configurability variant, we consider a more intriguing prob-
lem of allowing not only the inputs from agents but also the
inputs from the environment. This is essential when consid-
ering a manufacturing system as an individual module of a
larger system, which is typical for the vision of smart facto-
ries and Industrie 4.0 that tends to consider the connection of
di↵erent factories and supply chains.

Such scenario suggests that, 1) the reconfiguration is for
the agents’ behaviour in the system, and 2) agents (and the
system) do not have prior knowledge about how the inter-
actions with other systems may occur after reconfiguration.
The latter suggests that, to ensure that the resulting system
can satisfy objectives, the reconfiguration needs to consider
all possible interactions from the environment (Recall that we
imagine there is an agent behind the environment protocol to
conduct the inputs). Further, the definition of “all possible in-
teractions from the environment” can be concretised by stat-
ing that the environment has complete information over the
system state and perfect recall memory over the history. It is
a maximal assumption over the environment’s capability, but
nevertheless reasonable for the reasons given above.

Now we formalise the above intuitions. The environment
behaves based on the environment protocol, i.e., given an
environment state le and a joint action a, the set of possi-
ble next environment states can be any nonempty subset of
the set N(le, a). Formally, the inputs of the environment can
be defined by a strategy � as follows: given any finite path
⇢ = ts1...sk with t the initial state and sk = (le, l1, ..., ln) and

318

any joint action a = (a1, ..., an) such that ai 2 LActi((li, Pi(le)))
for all i 2 Agt, we have that�(⇢, a) ✓ N(le, a) and�(⇢, a) , ;.
Let ⌃(M) be the set of all environment strategies in a multia-
gent system M.

Given a strategy � of the environment, a path s0s1s2... is
consistent with � if for all i � 0 with si = (le, l1, ..., ln) and
si+1 = (l0e, l01, ..., l

0
n), we have that (si, si+1) 2 T and there exists

a joint action a = (a1, ..., an) such that l0e 2 �(s0...si, a) and
(li, Pi(le), ai, l0i) 2 Ti for all i 2 Agt. Now we can define the
semantics of a formula � over a multiagent system M and an
environment strategy � by a satisfaction relation M,�, s |= �
where s 2 rch(M). The definition basically follows the same
pattern as M, s |= �, except for the following points. When
interpreting temporal formulas, paths need to be consistent
with �. E.g.,

1. M,�, s |= EG� if there exists a fair path s0s1 . . . consis-
tent with �, such that s0 = s and M,�, sk |= � for all
k � 0,

Let rch(M,�) be a set of states that are fair and reachable
in the system M by paths consistent with �. The semantics
of knowledge operator assumes that agents do not have prior
knowledge over the environment’s strategy. That is,

1. M,�, s |= Ki� if for all s0 2 rch(M) and all strategies
�0 2 ⌃(M) such that (s, s0) 2⇠i and s0 2 rch(M,�0), we
have M,�0, s0 |= �.

Considering config-settings under all possible environment
strategies, we define the following reconfigurability variant.
Given a multiagent system M, a set A ✓ Si2Agt Actsi of lo-
cal actions, and a CTLK(V, Agt,

S
i2Agt Actsi) formula �, the

reconfigurability problem, written as M, A |=env �, is to de-
cide whether there exist config-settings XA = {xi,a | a 2
A \ Actsi, i 2 Agt} such that for all strategies � 2 ⌃(M[XA]),
we have that M[XA],�, t |= �. Note that, according to this
definition, the environment has prior knowledge over agents’
config-settings. This is in line with the maximal assumption
over environment’s capability. The complexity of the prob-
lem is measured over the number |S | of states, the number
|Si2Agt Actsi| of local actions, and the length |�| of formula.

As expected, the complexity of reconfigurability with envi-
ronment strategy is higher than without environment strategy.
Theorem 3 The reconfigurability with config-settings
and environment strategy is EXPTIME-complete for both
CTLK(V, Agt) and CTLK(V, Agt,

S
i2Agt Actsi).

Proof: (Sketch) Let A = {a1, ..., ak} be a set of local actions
such that for 1  j  k, a j 2 Actsi j for some agent i j. Given
M, we construct M0 = (S 0, t0,T 0, {⇠0i}i2Agt, ⇡0,F) such that

1. S 0 = (Le ⇥ L1 ⇥ ... ⇥ Ln ⇥ ⇧k
j=1P(Li j ⇥ Oi j)) [{t0},

2. the transition relation T 0 is defined as follows.
(a) (t0, (te, t1, ..., tn, y1, ..., yk)) 2 T 0 if for all 1  j  k,

there is y j 2 P(Li j ⇥ Oi j).
(b) ((le, l1, ..., ln, y1, ..., yk), (l0e, l01, ..., l

0
n, y1, ..., yk)) 2 T 0

if there exist local actions a01, ..., a
0
n such that

(le, (a01, ..., a
0
n), l0e) 2 Te and for all 1  m  n,

we have a0m 2 Actsm, (lm, Pm(le), a0m, l0m) 2 Tm, and
(lm, Pm(le)) 2 y j if a0m = a j for some 1  j  k.

3. the relation ⇠0m is defined as follows: s ⇠0m s0 i↵ either
of the following conditions holds: (a) s = s0 = t0; (b)
s = (le, ..., ln, y1, ..., yk), s0 = (l0e, ..., l0n, y01, ..., y

0
k), lm = l0m,

Pm(le) = Pm(l0e), and y j = y0j for all 1  j  k.

4. the function ⇡0 is defined as follows: ⇡0(t0) = ; and
⇡0((le, l1, ..., ln, y1, ..., yk)) = ⇡(le, l1, ..., ln).

5. the fairness constraint F 0 is defined as follows:
(le, l1, ..., ln, y1, ..., yk) 2 F 0 i↵ (le, l1, ..., ln) 2 F .

Intuitively, all states are attached with a set of config-settings,
the new transition relation is consistent with config-settings,
and config-settings do not change along the transitions.

Let M0(s) for s 2 S 0 be the same system with M0 except for
the initial state s, that is, M0(s) = (S 0, s,T 0, {⇠0i}i2Agt, ⇡0). First
of all, the reconfigurability problem M, A |=env � is equivalent
to M0(s), ; |=env � for some state s = (te, t1, ..., tn, y1, ..., yk)
such that {y1, ..., yk} is a set of config-settings of A.

Then for any state s 2 S 0, we consider the problem
M0(s), ; |=env �. We proceed by induction on the formula
�. For � = p 2 V , we have that M0(s), ; |=env � i↵ � 2 ⇡0(s).

For � = xm,a with m 2 Agt and a 2 LActm, we have that
M0(s), ; |=env � with s = (le, l1, ..., ln, y1, ..., yk) i↵ there ex-
ists 1  j  k such that agt(y j) = m, act(y j) = a, and
(lm, Pm(le)) 2 y j, where agt(y j) and act(y j) represent the cor-
responding agent and action of the config-setting for y j.

For � = Ki', we have M0(s), ; |=env � i↵ 8� : M0(s),�, s |=
�. Then by the semantics of knowledge operator, the latter is
equivalent to 8�8s08�0 : s ⇠0i s0 ^ s0 2 rch(M0(s),�0))
M0(s),�0, s0 |= ', which in turn is equivalent to 8s0 : s ⇠0i
s0) (8�0 : s0 2 rch(M0(s),�0)) M0(s),�0, s0 |= '). Be-
cause �0 is any strategy with perfect recall memory, we have
that 8s0 : s ⇠0i s0) M0(s0), ; |=env '.

For � being a CTL formula, we can check it by an au-
tomata theoretic approach. We use T 0(s) = {s0 | (s, s0) 2 T 0}
to denote the set of successor states of s in system M0. As-
sume that s = (le, l1, ..., ln, y1, ..., yk). Let s0, s00 2 T 0(s) be
two successor states of s such that s0 = (l0e, l01, ..., l

0
n, y1, ..., yk)

and s00 = (l00e , l001 , ..., l
00
n , y1, ..., yk), we say that s0 and s00 are

in the same partition of T 0(s) if l0e = l00e and there exist
local actions a1, ..., an such that for all i 2 Agt, there is
{(li, Pi(le), ai, l0i), (li, Pi(le), ai, l00i)} ✓ Ti. Intuitively, two states
in the same partition of T 0(s) if they can be nondeterministi-
cally reached from s in a step after applying config-settings
and environment strategy. That is, these are internal nonde-
terminism that cannot be eliminated by the interactions with
the outside world.

From M0(s) = (S 0, s,T 0, {⇠0i}i2Agt, ⇡0), we define a Büchi
tree automaton AM0(s) = (⌃,D,Q, �, q0,Q) such that

1. ⌃ = P(V) [{?}, Q = S 0 ⇥ {>, `,?}, q0 = (s,>),

2. D =
S

s2S {1, ..., |T 0(s)|},
3. � : Q ⇥ ⌃ ⇥ D ! 2Q⇤ is defined as follows: for s0 2 S 0

and k = |T 0(s0)| with T 0(s0) = (s1, ..., sk), we have (a) if
m 2 {`,?} then �((s0,m),?, k) = {((s1,?), ..., (sk,?))},
and (b) if m 2 {`,>}, then we let ((s1, y1), ..., (sk, yk)) 2
�((s0,m), ⇡0(s0), k) such that, there exists a nonempty set
B ✓ {1, ..., k} of indices such that for all i, j 2 B, si and
s j are in the same partition of T 0(s0), and

319

(a) yi = >, for all i 2 B, and
(b) y j = `, for all j < B and 1  j  k.

Note that we use F = Q to express that we only care about
infinite paths. Moreover, the formula � needs to be modified
to reject those runs where ? is labeled on the states. This can
be done by following the approach in [Kupferman and Vardi,
1996]. We still call the resulting formula �.

Given a CTL formula � and a set D ⇢ N with a maxi-
mal element k, there exists a Büchi tree automaton AD,¬� that
accepts exactly all the tree models of ¬� with branching de-
grees in D. By [Vardi and Wolper, 1986], the size of AD,¬�
is O(2k·|�|). To decide whether M0(s), ; |=env � for a CTL for-
mula is equivalent to checking the emptiness of the product
automaton AM0(s) ⇥ A¬�. The checking of emptiness of Büchi
tree automaton can be done in quadratic time, so the checking
of M0(s), ; |=env � can be done in exponential time.

Therefore, checking whether M0(s), ; |=env � can be done
in exponential time with respect to |S |, |Si2Agt Actsi|, and |�|.
That is, the reconfigurability M, A |=env � is in EXPTIME.

We omit the proof for the lower bound, which is reduced
from the problem of a linearly bounded alternating Turing
machine accepting an empty input tape. �
Example 4 (Continue with Example 3) The behaviour of the
distributor is modelled by the environment. Therefore, when
checking whether

M, A |=env �

for � ⌘ �1^�2^�3^�4^�5^�6^�7, it is actually checking
reconfigurability with respect to the objective � under all pos-
sible interactions of the distributor with the other modules of
the bigger system. The interaction occurs by the inputs over
the nondeterminism of the distributor on choosing agents to
satisfy their requests.

The above example shows an additional advantage of re-
configuration with environment strategy over model checking
in that, it can work directly with under-specified multiagent
system and automatically verify the formulas without spec-
ifying the details of the aspect A2 (given in Section 3) for
environment’s protocol. As discussed in Section 3, both this
advantage and the advantage from config-settings are essen-
tial for the reconfiguration of MCSs.

6 Related Work
Methodological research has been conducted on the speci-
fication of reactive multiagent systems for various applica-
tions, e.g., textile industry, vehicle collision avoidance [Yang
et al., 2008], transportation network [Meignan et al., 2007],
etc. The developments of these systems rely on the code de-
velopers, and the analysis of the systems is usually done by
simulation techniques. Our approach is based on, and gener-
alises, the logic-based specification and verification of multi-
agent systems, and therefore is rigorous and automated.

The interests towards the reconfiguration of systems are re-
cent with prototype systems appearing, see e.g., [Bishop et
al., 2005; Oung et al., 2010]. The reconfiguration actions in
these system are hard-wired in their implementations, with-
out rigorous proofs on their reliability, e.g, whether executing
such an action at a specific system state is safe, or whether

it is possible to executing such an action on a module of the
system and at the same time ensuring the stability and pre-
dictability of the entire system. The paper complements this
with the formalisation of reconfigurability, which is treated as
a variant of model checking multiagent systems.

The techniques employed can be related to the module
checking [Kupferman and Vardi, 1996], which considers the
interactions of a monolithic system with outside world. There
are major di↵erences when considering multiagent systems.
In module checking, the outside world is able to interact with
all nondeterministic choices of the system. This contrasts
with a multiagent system, in which an environment strategy
can only interact with the environment protocol and cannot
directly control agents’ behaviour. To enable the interaction
with agents’ protocols and compete with environment strate-
gies, config-settings are considered. Moreover, to work with
multiple agents and their partial observations, we consider
a logic CTLK(V, Agt,

S
i2Agt Actsi) in which we have knowl-

edge operator Ki and can write structure xi,a to directly refer
to the config-settings (See formulas �5, �6, �7 in Example 3
for such examples). These di↵erences distance the concept
of reconfigurablity with that of module checking. Recently,
[Jamroga and Murano, 2014] discusses the di↵erence be-
tween module checking and ATL model checking, and [Jam-
roga and Murano, 2015] discusses module checking based on
ATL when environment is partial observation, which is dif-
ferent with our maximal assumption about the environment.

Reconfiguration can be regarded as a competitive game be-
tween agents and the environment. To reasoning about com-
petitive games, various strategy logics, such as [Alur et al.,
2002; Huang and van der Meyden, 2014c; 2014a], have been
proposed, together with model checking algorithms [Huang
and van der Meyden, 2014b; Huang, 2015]. The paper works
with a particular setting: a set of reactive agents operate their
config-settings against an environment which have full infor-
mation about the system and agents’ strategy, to achieve a
goal expressed with CTLK(V, Agt,

S
i2Agt Actsi) formula.

7 Conclusions and Future Work
In the paper, aiming at the applications in smart factories and
Industrie 4.0, we formalise the reconfigurability for reactive
multiagent systems, by generalising the approaches of model
checking multiagent systems. Two reconfiguration scenarios
are considered and their complexity results are given.

States and transitions of multiagent systems are high-level
abstractions of the real-world manufacturing control systems.
Working directly with concrete systems in which the states
include geometric place information and the transitions are
described by e.g., constraints in a three-dimensional space, is
interesting. [Reif, 1979] considers the planning of a sequence
of movements of linked polyhedra, which are suitable to pre-
cisely represent actual mechanical devices e.g., robot arms.

Moreover, we are also interested in stochastic multiagent
systems, on which our e↵orts have been made towards prob-
abilistic extensions of strategy logics [Huang et al., 2012;
Huang and Kwiatkowska, 2016; Huang and Luo, 2013]. Fu-
ture work includes probabilistic reconfiguration with stochas-
tic config-settings and strategies.

320

Acknowledgement The authors gratefully thank the re-
viewers for detailed and insightful comments. The authors
are supported by ERC Advanced Grant VERIWARE, EPSRC
Mobile Autonomy Programme Grant EP/M019918/1, Na-
tional Natural Science Foundation of China Grant 61572234
and No.61472369, Fundamental Research Funds for the Cen-
tral Universities of China Grant 21615441, and ARC Grant
DP150101618.

References
[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and

Orna Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49(5):672–713, 2002.

[Bishop et al., 2005] J. Bishop, S. Burden, E. Klavins, and
R. Kreisberg. Programmable parts: a demonstration of the
grammatical approach to self-organization. In IROS 2005,
pages 3684–3691, 2005.

[Chen et al., 2006] I-Ming Chen, Guilin Yang, and
Song Huat Yeo. Automatic modeling for modular
reconfigurable robotic systems – theory and practice. In
Industrial Robotics: Theory, Modelling and Control. Pro
Literatur Verlag, Germany, 2006.

[Clarke et al., 1999] E. Clarke, O. Grumberg, and D. Peled.
Model Checking. The MIT Press, 1999.

[Dennis et al., 2014] Louise A. Dennis, Michael Fisher,
Jonathan M. Aitken, Sandor M. Veres, Yang Gao, A↵an
Shaukat, and Guy Burroughes. Reconfigurable autonomy.
Künstliche Intelligenz, 28(3):199–207, 2014.

[Fagin et al., 1995] R. Fagin, J. Halpern, Y. Moses, and
M. Vardi. Reasoning About Knowledge. MIT Press, 1995.

[Gammie and van der Meyden, 2004] P. Gammie and
R. van der Meyden. MCK: Model checking the logic of
knowledge. In CAV2004, pages 479–483, 2004.

[Huang and Kwiatkowska, 2016] Xiaowei Huang and Marta
Kwiatkowska. Model Checking Probabilistic Knowledge:
A PSPACE Case. In AAAI 2016, 2016.

[Huang and Luo, 2013] Xiaowei Huang and Cheng Luo. A
Logic of Probabilistic Knowledge and Strategy. In AAMAS
2013, pages 845–852, 2013.

[Huang and van der Meyden, 2014a] Xiaowei Huang and
Ron van der Meyden. An Epistemic Strategy Logic. In
SR 2014, pages 35–41, 2014.

[Huang and van der Meyden, 2014b] Xiaowei Huang and
Ron van der Meyden. Symbolic model checking epistemic
strategy logic. In AAAI 2014, pages 1426–1432, 2014.

[Huang and van der Meyden, 2014c] Xiaowei Huang and
Ron van der Meyden. A temporal logic of strategic knowl-
edge. In KR 2014, 2014.

[Huang et al., 2012] Xiaowei Huang, Kaile Su, and Chenyi
Zhang. Probabilistic Alternating-time Temporal Logic of
Incomplete information and Synchronous Perfect Recall.
In AAAI-12, pages 765–771, 2012.

[Huang, 2015] Xiaowei Huang. Bounded model checking of
strategy ability with perfect recall. Artificial Intelligence,
222:182–200, 2015.

[Ind, 2011] Industrie 4.0: Mit dem internet der dinge auf
dem weg zur 4. industriellen revolution, 2011.

[Jamroga and Murano, 2014] Wojciech Jamroga and Aniello
Murano. On module checking and strategies. In AAMAS
2014, pages 701–708, 2014.

[Jamroga and Murano, 2015] Wojciech Jamroga and Aniello
Murano. Module checking of strategic ability. In AAMAS
2015, pages 227–235, 2015.

[Kasper Støy et al., 2010] Kasper Støy, David Brandt, and
David J. Christensen. Self-Reconfigurable Robots. MIT
Press, 2010.

[Koren et al., 2003] Y. Koren, U. Heisel, F. Jovane, T. Mori-
waki, G. Pritschow, G. Ulsoy, and H. Van Brussel. Re-
configurable manufacturing systems. In Manufacturing
Technologies for Machines of the Future, pages 627–665.
Springer, 2003.

[Kupferman and Vardi, 1996] Orna Kupferman and
Moshe Y. Vardi. Module checking. In CAV 1996,
pages 75–86, 1996.

[Lomuscio et al., 2009] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: A model checker for the verification of
multi-agent systems. In CAV2009, pages 682–688, 2009.

[Marik and McFarlane, 2005] V. Marik and D. McFarlane.
Industrial adoption of agent-based technologies. IEEE In-
telligent Systems, 20(1):IEEE Intelligent Systems, 2005.

[Meignan et al., 2007] David Meignan, Olivier Simonin, and
Abderrafiaa Koukam. Simulation and evaluation of ur-
ban bus-networks using a multiagent approach. Simulation
Modelling Practice and Theory, 15(6):659–671, 2007.

[Nikolaus, 2014] Katrin Nikolaus. Manufacturing: Self-
organizing factories, 2014.

[Oung et al., 2010] R. Oung, F. Bourgault, M. Donovan, and
R. D’Andrea. The distributed flight array. In ICRA2010,
pages 601–607, 2010.

[Paulo Leitão, 2009] Paulo Leitão. Agent-based distributed
manufacturing control: A state-of-the-art survey. Engi-
neering Applications of Artificial Intelligence, 22(7):979–
991, 2009.

[Reif, 1979] John H. Reif. Complexity of the mover’s prob-
lem and generalizations. In FOCS 1979, pages 421–427,
1979.

[Tang and Wong, 2005] H.P. Tang and T.N. Wong. Reactive
multi-agent system for assembly cell control. Robotics and
Computer-Integrated Manufacturing, 21(2):87–98, 2005.

[Vardi and Wolper, 1986] Moshe Y. Vardi and Pierre Wolper.
Automata-theoretic techniques for modal logics of pro-
grams. J. Comput. Syst. Sci., 32(2):183–221, 1986.

[Yang et al., 2008] Sibo Yang, F. Gechter, and A. Koukam.
Application of reactive multi-agent system to vehicle col-
lision avoidance. In ICTAI 2008, pages 197 – 204, 2008.

[Zaske, 2015] Sara Zaske. Germany’s vision for industrie
4.0: The revolution will be digitised, 2015.

321

