
Symbolic Model Checking Algorithms for
Temporal-Epistemic Logic

Xiaowei Huang and Ron van der Meyden

School of Computer Science and Engineering,
University of New South Wales, Australia

Abstract. The paper presents ordered binary decision diagram based symbolic
model checking algorithms for fragments of a temporal-epistemic logic based on
the temporal logic CTL∗ with operators for the knowledge and common knowl-
edge of multiple agents. The knowledge operators are interpreted with respect to
several distinct semantics: observational, clock, synchronous perfect recall and
asynchronous perfect recall.

1 Introduction

Model checking [5] is an approach to systems verification based on the use of algo-
rithms that check whether a specification, expressed as a formula of some modal logic,
holds in a particular model of that logic, which represents the system to be verified.
Symbolic model checking refers to an approach that works with symbolic representa-
tions of both the model and the specification formula. In particular, a prominent set of
these algorithms use Ordered Binary Decision Diagrams [3] (or OBDD’s).

The OBDD approach to symbolic model checking was first developed for branch-
ing time temporal logics [4], but has been extended to richer types of modal logic. In
this paper, we present OBDD-based symbolic model checking algorithms for temporal-
epistemic logics [7]. Epistemic logic provides operators that describe what an agent
knows. Epistemic logic has been applied within computer science to distributed algo-
rithms [7], computer security [17], game theory [9], and multi-agent systems in AI [14].

A range of different interpretations of knowledge can be given, depending on the
amount of memory one associates with an agent. In this paper, we consider four distinct
memory assumptions, each associated with a different semantics for the knowledge op-
erators: the observational semantics captures what an agent knows based on just its
current observation, the clock semantics captures what an agent knows based on its
current observation, plus the current value of the clock, the synchronous perfect recall
semantics assumes that an agent is aware of each clock tick, and remembers all its ob-
servations, the asynchronous perfect recall semantics assumes that the system operates
asynchronously, with agents aware of the passing of time only when their observations
change, but that agents remember the sequence of distinct observations they have made.
We deal with a branching-time temporal epistemic logic CTL∗Kn that combines opera-
tors for linear time, temporal branching, and operators for the knowledge of multiple
agents. We describe algorithms that are tailored for each of these different semantics. In
general, the richer the semantics, the more restrictive is the fragment of the specification

language on which it is decidable, so most of the algorithms operate only on fragments
of the full logic.

The model checker MCK1 implements all the algorithms described here. Many of
the main ideas were already implemented in the 2003 release [8], but have never been
documented in the literature. Our purpose in this paper is to close this gap, and to
describe the versions implemented in MCK 0.5.0 (Nov 2010), which enlarges the cov-
erage of some of the algorithms and includes algorithms for perfect recall not available
in earlier releases.

The structure of the paper is as follows. In Section 2 we describe the logic we work
with and the model checking problems based on the four possible interpretations of
knowledge. Section 3 reviews OBDD’s and operations on this symbolic representation
that are used in our algorithms. Sections 4-7 consider algorithms for the four different
semantics. Section 8 concludes with pointers to applications.

2 The Temporal-Epistemic Model Checking Problem

We work with a logic CTL∗Kn that combines the branching time logic CTL∗ with oper-
ators from the logic of knowledge. Its syntax is presented as follows:

φ = p | φ1 ∧ φ2 | ¬φ | Aφ | Xφ | φ1Uφ2 | Kiφ | CGφ ,

where p is an element of the set Prop of atomic propositions and i is an element of the set
of agents Agt = {1, . . . , n} and G is a nonempty subset of Agt. Other common operators
may be defined from the others, in particular φ ⇒ ψ = ¬φ ∨ ψ, and Eφ = ¬A¬φ, and
Fφ = TU φ, and Gφ = ¬F¬φ. We use T and F to denote the truth values True and
False, respectively.

Semantics of the logic can be given using interpreted systems [7]. Let S be a set,
which we call the set of environment states. A run over environment states S is a func-
tion r : N→ S ×L1× . . .×Ln, where each Li is some set, called the set of local states of
agent i. These local states are used to concretely represent the information on the basis
of which agent i computes its knowledge. Given a run r, agent i and time m, we write
ri(m) for the i + 1-st component (in Li) of r(m), and re(m) for the first component (in S).
An interpreted system over environment states S is a tuple I = (R, π), where R is a set
of runs over environment states S , and π : S → P(Prop) is an interpretation function.

A point of I is a pair (r,m) where r ∈ R and m ∈ N. We define the semantics of
CTL∗Kn by means of a relation I, (r,m) |= φ, where I is an intepreted system, (r,m) is a
point of I, and φ is a formula. This relation is defined by:

– I, (r,m) |= p if p ∈ π(r(m)),
– I, (r,m) |= ¬φ if not I, (r,m) |= φ
– I, (r,m) |= φ ∧ ψ if I, (r,m) |= φ and I, (r,m) |= ψ
– I, (r,m) |= Aφ if for all runs r′ ∈ R with r′(k) = r(k) for all k = 0 . . .m, we have
I, (r′,m) |= φ,

– I, (r,m) |= Xφ if I, (r,m + 1) |= φ.

1 http://www.cse.unsw.edu.au/∼mck

– I, (r,m) |= φU ψ if for some m′ ≥ m, I, (r,m′) |= ψ and I, (r,m′′) |= φ for all m′′

with m ≤ m′′ < m′

– I, (r,m) |= Kiφ if for all points (r′,m′) of I such that ri(m) = r′i (m
′) we have

I, (r′,m′) |= φ

– I, (r,m) |= CGφ if for all sequences (r,m) = (r0,m0) ∼i0 . . . ∼ik−1 (rk,mk) = (r′,m′)
such that il ∈ G for all l = 0 . . . k − 1, we have I, (r′,m′) |= φ.

While they give a clean and coherent semantics to the logic, interpreted systems are
not suitable as inputs for a model checking program, since they are infinite structures.
Instead, we use the following notion. A (finite) environment is a tuple M = (S , I,→
, {Oi}i=1...n, π, χ) where S is a (finite) set of states, I ⊆ S is the set of initial states,
→⊆ S × S is a serial temporal transition relation, each Oi : S → O is an observation
function for agent i ∈ Agt, π : S → P(Prop) is a propositional interpretation, and
χ ⊆ P(S) \ {∅} is a generalized Büchi fairness condition. The environment M can also
be regarded as a generalized Büchi automaton with χ the set of acceptance sets. We
define a fullpath from a state s to be is an infinite sequence of states ρ = s0s1... such
that s0 = s and si → si+1 for all i ≥ 0. We say a fullpath is initialised if s0 ∈ I. The
fairness condition places an additional constraint on fullpaths. A fullpath s0s1 . . . is said
to be fair if for all Q ∈ χ, there exists a state s ∈ Q such that s = si for infinitely many i.

We may construct several different interpreted systems for each environment, de-
pending on a view that is used to define the local states associated to agents. We consider
the following views: the observational view obs, the clock view clk, the synchronous
perfect recall view spr and the asynchronous perfect recall view apr. Given a fair full-
path ρ and a view V, we may construct a run ρV by defining the components at each
time m as follows. In all cases, the environment state ρVe (m) = ρ(m). The local state of
agent i at time m for each of the different views is given by:

– ρobsi (m) = Oi(ρ(m)): here agent i’s local state at time m is its current observation;
– ρclki (m) = (m,Oi(ρ(m))): this models that the agent’s local state is its current obser-

vation, plus the clock value;
– ρspri (m) = Oi(ρ(0)) . . .Oi(ρ(m)): representing that the agent remembers all its ob-

servations;
– ρapri (m) = reduce(ρspri (m)), where the function reduce reduces a sequence of obser-

vations to a shorter sequence by replacing maximal subsequences of consecutively
repeated copies of an observation by a single copy of that observation (for example,
reduce(xxyyxxx) = xyx): this represents that the agent has perfect recall, but oper-
ates asynchronously, and is aware of the passing of time only when its observation
changes.

Given an environment M over states S , and a viewV, we may construct an interpreted
system IV(M) = (RV, π) over global states S . The interpretation π is the same as in M,
and the set of runs RV is defined to be the set of runs ρV where ρ is a fair initialised
fullpath of M.

A formula φ of CTL∗Kn is said to hold in M with respect to a view V, written
M |=V φ, if IV(M), (r, 0) |= φ for all r ∈ RV. The model checking problem is then to
determine, given an enviroment M, viewV and formula φ, whether M |=V φ.

3 Ordered Binary Decision Diagrams

Ordered Binary Decision Diagrams (OBDD’s) [3] are a symbolic representation of
boolean functions that can, in practice, be quite compact and that support efficient com-
putation of operations that combine boolean functions. Let V be a set of variables.
A V-assignment is a function s : V → {0, 1}. Write Assgts(V) for the set of all V-
assignments, and s[v 7→ x] for the function that is identical to s except that it takes
value x on input v. A V-indexed boolean function is a mapping f : Assgts(V) → {0, 1}.
Note that such functions are able to represent sets X ⊆ Assgts(V) by their characteristic
functions fX , mapping s to 1 just in case s ∈ X. One way to represent such a function f
is using a binary tree of height n, with each level corresponding to one of the variables
in V , and leaves labelled from {0, 1}. This tree can in turn be thought of as a finite state
automaton on alphabet {0, 1}. OBDD’s more compactly represent such a function as a
dag of height n, with binary branching, by applying the usual finite state automaton
minimization algorithm. Given this minimal representation, it is moreover possible to
compute (in practice, often in reasonable time) the following operations.

– The boolean operations∧,¬, defined pointwise on functions. E.g., if f , g : Assgts(V)→
{0, 1}, then f ∧ g : Assgts(V) → {0, 1} is defined by (f ∧ g)(s) = f (s) ∧ g(s), and
¬ f : Assgts(V)→ {0, 1} is defined by (¬ f)(s) = ¬ f (s).

– Boolean quantification ∃,∀, e.g., if f : Assgts(V) → {0, 1} and v ∈ V then ∃v(f) :
Assgts(V \ {v})→ {0, 1} maps s ∈ Assgts(V \ {v}) to f (s[v 7→ 0]) ∨ f (s[v 7→ 1]).

– variable substitution: if f : Assgts(V) → {0, 1} and U ⊆ V and U′ are sets with
U′ ∩ (V \U) = ∅, and σ : U → U′ is a bijection, then fσ : Assgts((V \U)∪U′)→
{0, 1}maps s : Assgts((V \U)∪U′) to f (sσ), where f (sσ)(v) is s(v) when v ∈ V \U
and s(σ(v)) when v ∈ U′.

These operations on the minimal OBDD representations are used in all the algorithms
we discuss in this paper.

Each of the algorithms relies on an OBDD representation of the environment M in
the input to the model checking problem. This environment is represented as follows:

1. Assuming S ⊆ Assgts(Prop), the set of states S can be represented by its charac-
teristic function fS : Assgts(Prop) → {0, 1}. Similarly, OBDD representations of
the characteristic functions fI , fQ are used to represent the set I of initial states, and
the fairness conditions Q ∈ χ, respectively.

2. For the transition relation→, we use the set of “primed” versions of the state vari-
ables Prop, defined by Prop′ = {v′ | v ∈ Prop}, and the function f→ : Assgts(Prop∪
Prop′) → {0, 1} such that if s ∈ Assgts(Prop) and s′ ∈ Assgts(Prop′), then
f→(s ∪ s′) = 1 iff s→ s′.

3. The observation functions Oi are associated with indistinguishability relations ∼i on
states, defined by s ∼i s′ if Oi(s) = Oi(s′). These can be represented as a boolean
functions f∼i : Assgts(Prop ∪ Prop′) → {0, 1} such that if s ∈ Assgts(Prop) and
s′ ∈ Assgts(Prop′), then f∼i (s ∪ s′) = 1 iff s ∼i s′.

Using these basic OBDD representations of various sets and relations, the algo-
rithms below compute other sets and relations, also represented as OBDDs. For clarity,

we generally focus below on the set level descriptions rather than on how the OBDD
representations are computed. We give just one example here: suppose that we define
the reach(U,→) = {t ∈ S | ∃s ∈ U(s →∗ t)}, i.e., the set of states reachable via→ from
a state in U. The OBDD representation of this can be computed the first element g j of
the sequence defined inductively by g0 = fU , and gi+1 = (∃Prop(gi ∧ f→))[Prop′ 7→
Prop] such that g j+1 = g j. Note that here ∃Prop abbreviates the quantifier sequence
∃v1 . . .∃vk, where Prop = {v1..vk}, and [Prop′ 7→ Prop] is the OBDD operation of
substituting each v′ ∈ Prop′ with the corresponding variable v ∈ Prop.

4 Model Checking for the Observational View

Symbolic model checking for the observational view for the full language CTL∗Kn can
be handled by means of straightforward extensions of known algorithms for OBDD-
based model checking of branching time logics, and has been implemented in a number
of model checkers. MCK 0.1.0 (2003) separately implemented model checking for (ob-
servational view) epistemic extensions of the branching time logic CTL and the linear
time logic LTL. MCMAS [12] supports the combination of CTL, epistemic logic, Al-
ternating Time Logic, and deontic modalities. MCTK [15] supports the combination of
CTL∗ and epistemic logic, which is now also supported in MCK 0.5.0. We just high-
light here a few points that may not be clear in the literature and that are relevant to
what follows.

First, when dealing with epistemic operators, it is important to take into account
fair reachability. We say that a state s ∈ S is fair if it is the initial state of some fair
fullpath, otherwise the state is unfair. A state s is reachable if there exists a sequence
s0 → s1 → . . . sk = w where s0 ∈ I. A state is fair and reachable iff it occurs in some
run. Note that some reachable states may be unfair.

OBDD-based model checking for CTL is based on recursively computing an OBDD
representation of the set S φ of all states (reachable or unreachable) at which φ holds,
and testing whether I ⊆ S φ. When dealing with knowledge operators, the appropriate
clause of the recursion is based on the equation

S Kiφ = {s ∈ S | ∀s′ ∈ S fair ∩ S reach (Oi(s) = Oi(s′)⇒ s ∈ S φ)} .

Note that the quantification over s′ needs to be restricted to the set of fair and reachable
states, since these are the only states that occur in the interpreted system I(M), so
that agents, implicitly, know that only fair and reachable states are possible. OBDD
representations of S fair, S reach can be computed using techniques described in [5]. A
similar issue arises in the fixpoint used to compute S CGφ.

Second, the incorporation of fairness constraints in the algorithms for the above
grammar is not explicitly documented in the literature, but it is a straightforward appli-
cation of ideas from [5]. (The combination of CTL, knowledge operators, and fairness
constraints is first handled following methods for CTL together with the above clause,
and then extended to the combination of CTL∗, knowledge operators, and fairness con-
straints, by means an extension of the translation from LTL to CTL.)

5 Model Checking for the Clock View

Model checking the clock view is more complex than the observational view, because
the observability of the clock means that agent knowledge needs to take into account
the set of states possible at a given time, which can take 2|S | possible values. Complex-
ity analysis conducted in [6, 10], shows that model checking the language CTL∗Kn with
respect to the clock view is decidable in PSPACE, based on an input representation in
which all states are given in the input, rather than symbolically represented. Several
fragments are discussed in these papers, but these have complexity at some level Π p

k
of the polynomial hierarchy. (Model Checking based on symbolic inputs is likely to be
more complex. [11] proves a PSPACE-complete complexity for model checking CTL
based on symbolic inputs, compared to PTIME for explicitly represented systems. This
result is generalized in [13] to show that model checking on CTLKobs

n based on sym-
bolic inputs is also PSPACE-complete.) Model checking LTL is also PSPACE-complete,
but there is the essential difference that most of its complexity derives from the size of
the (typically small) formula, whereas for CTL∗Kn there is also a PSPACE-complete
dependence in the (generally much larger) size of the model. In spite of this complex-
ity, several smaller fragments exist that can be practicably handled using OBDD-based
algorithms.

5.1 MCK Algorithm spec clk xn

This algorithm works for formulas of the form Xdϕ, where ϕ is a formula containing
only epistemic operators, i.e. given by the grammar

φ := p | ¬φ | φ1 ∧ φ2 | Kiφ | CGφ ,

where p ∈ Prop, i ∈ Agt and G ⊆ Agt. The idea of the algorithm is to first compute
the set S d of all states possible at time d, and then model check φ as if this set were the
set of states of Kripke structure in which the indistinguishability relations are defined
using observational indistinguishability. The set S d can be computed recursively by
S 0 = I ∩ S f air, and S m+1 = {s ∈ S | ∃t ∈ S m : t → s, s ∈ S f air}.

Theorem 1. M |=clk Xdϕ iff Md |=
obs ϕ, where Md = (S d, S d,→, {Oi}i∈Agt, π, χ).

The RHS of this result can be computed by the OBDD-based algorithms for the
observational semantics.

5.2 MCK Algorithm spec clk ctl nested

The algorithm of Section 5.1 does not allow temporal operators to be nested inside
epistemic operators. A related set-based algorithm works for the more general fragment
of the logic, defined by the following grammar:

φ = p | φ1 ∧ φ2 | ¬φ | AXφ | Kiφ | CGφ .

It proceeds by computing the set of states S Z
φ at which the formula φ (from the above

grammar) would be true if we were to take Z as the set of initial states of the environ-
ment. Assuming Z ⊆ S fair, this set can be computed recursively as follows:

S Z
v = Z ∩ {s ∈ S | v ∈ π(s)}

S Z
¬ϕ = Z \ S Z

ϕ S Z
ϕ1∧ϕ2

= S Z
ϕ1
∩ S Z

ϕ2

S Z
AXϕ = {s ∈ Z | ∀s′ ∈ S (s→ s′∧ s′ ∈ S f air ⇒ s′ ∈ S Z′

ϕ)}, where Z′ = {s′ ∈ S | ∃s ∈
Z(s→ s′, s′ ∈ S f air)}
S Z

Kiϕ
= {s ∈ Z | ∀s′ ∈ Z(s ∼i s′ ⇒ s′ ∈ S Z

ϕ)}
S Z

CGϕ
is the first element Ui of the (decreasing) sequence U0,U1, . . . such that Ui =

Ui+1, where U0 = Z and U j+1 = {s ∈ Z | ∀i ∈ G∀s′ ∈ Z(s ∼i s′ ⇒ s′ ∈ S Z
ϕ ∩ U j)}.

OBDD representations of these sets can be straightforwardly computed using the
OBDD operations. The algorithm then proceeds by using the RHS of the following
result.

Theorem 2. M |=clk φ iff I ∩ S fair ⊆ S I∩S fair

φ .

5.3 MCK Algorithm spec clk nested

The previous algorithm requires that the branching operator A and the next-time opera-
tor X occur only in the combination AX. This constraint can be relaxed by means of an
approach that works with a boolean function of finite state sequences rather than with
sets of states. The grammar in this case is

φ = p | φ1 ∧ φ2 | ¬φ | Aφ | Xφ | Kiφ | CGφ .

A run prefix of M is a sequence of states t = s0 . . . sn that can be extended to a run
of M. (Note that this implies all states in the sequence are fair.) Given formula φ, let d
be the maximal depth of nesting of the next-time operator X in φ. Write Rd(M) for the
set of run prefixes of length d + 1.

For subformulas ϕ of φ, let f x
ϕ : Rd(M) → {0, 1} be a boolean function such that,

intuitively, f x
ϕ (t) means that formula ϕ holds at time x in run prefix t, where 0 ≤ x ≤ d.

The value f x
ϕ (t), can be computed recursively as follows:

f x
v (t) = t(x)(v)

f x
¬ϕ(t) = ¬ f x

ϕ (t) f x
ϕ1∧ϕ2

(t) = f x
ϕ1

(t) ∧ f x
ϕ2

(t)
f x
Xϕ(t) = f x+1

ϕ (t)
f x
Kiϕ

(t) = ∀t′ ∈ Rd(M) (Oi(t(x)) = Oi(t′(x))⇒ f x
ϕ (t′))

f x
Aϕ(t) = ∀t′ ∈ Rd(M) (t(x) = t′(x)⇒ f x

ϕ (t′))
(remark: it is not necessary for t, t′ to be identical up to time x here)
f x
CGϕ

(t) = gk(t), where gk is the first element of the sequence defined by g0 =

λt(f x
φ (t)) and g j+1 = λt(∀t′ ∈ Rd(M)(∀i ∈ G(Oi(t(x)) = Oi(t′(x)) ⇒ g j(t′)))), with

gk = gk+1

We then have the following characterization:

Theorem 3. M |=clk φ iff ∀t ∈ Rd(M)(f 0
φ (t)).

The functions f x
ϕ can be straightforwardly encoded as OBDD’s based on a set of

(d + 1)|Prop| variables that represent t, and the calculation of the RHS of the theo-
rem done using OBDD operations. Compared to the algorithm of the previous section,
which works with characteristic functions of state sets, requiring only Prop variables,
for formulas in the domain of both, the algorithm of this section can be expected to
consume more time and space.

6 Model Checking Synchronous Perfect Recall

For the full language CTL∗Kn, model checking with respect to the perfect recall inter-
pretation is undecidable [16]. However, OBDD-based algorithms can be developed for
various fragments.

6.1 MCK Algorithm spec spr xn

One special case of perfect recall model checking that can be handled effectively in
practice is formulas of the form Xdϕ, where ϕ is a formula in which the only modal
operator is Ki, for some fixed agent i. (That is, the formula talks about the knowledge
of just one agent.) The following symbolic model checking algorithm for this case was
first described in [17]. The idea is to work with boolean functions Tϕ : Od+1 × S →
{0, 1}, where O is the set of values of the observation function Oi in M, and, intuitively,
Tϕ(o0...od, s) = 1 just in case for all run prefixes t of length d + 1 with final state s,
extendable to a run r with ri(d) = o0 . . . od, we have I(M), (r, d) |=spr ϕ. The function
Tϕ can be recursively computed as follows. We first compute a function P(o0 . . . od, s)
that is true just in case it is possible to reach state s in such a way that agent i makes
observation sequence o0 . . . od, by P(o0, s) = (s ∈ I) ∧ (Oi(s) = o0), and

P(o0...om+1, s) = ∃t ∈ S (P(o1...om, t) ∧ t → s ∧ Oi(s) = om+1) .

The general case is then

Tp(o0...od, s) = (p ∈ π(s))
Tϕ1∧ϕ2 (o0...od, s) = Tϕ1 (o0...od, s) ∧ Tϕ2 (o1...od, s)
T¬ϕ(o0...od, s) = ¬Tϕ(o0...od, s)
TKiϕ(o0...od, s) = ∀t ∈ S (P(o0...od, t) ∧ t ∈ S f air ⇒ Tϕ(o0...od, t))

We then have the following characterization:

Theorem 4. M |=spr Xdϕ is equivalent to the truth of ∀o0....od, s ∈ S (P(o0...od, s)∧ s ∈
S f air ⇒ Tϕ(o0...od, s)).

The functions P, Tϕ and the RHS of the theorem can be computed using OBDDs.

6.2 MCK Algorithm spec spr nested

The restriction to a single agent’s knowledge in the algorithm of the previous section
can be overcome using an approach similar to that in Section 5.3. This allows us to
model check formulas from the grammar

φ = p | φ1 ∧ φ2 | ¬φ | Aφ | Xφ | Kiφ | CGφ .

with respect to the perfect recall interpretation of knowledge. Again, we work with
functions f x

ϕ : Rd(M) → {0, 1}, where d is the depth of nesting of X in φ, such that
encoding that the subformula ϕ of φ holds at time x of runs with prefix t ∈ Rd(M).
These values can be computed recursively by:

f x
v (t) = t(x)(v)

f x
¬ϕ(t) = ¬ f x

ϕ (t) f x
ϕ1∧ϕ2

(t) = f x
ϕ1

(t) ∧ f x
ϕ2

(t)
f x
Xϕ(t) = f x+1

ϕ (t)
f x
Aϕ(t) = ∀t′ ∈ Rd(M) (t =x t′ ⇒ f x

ϕ (t′)),
where t =x t′ is

∧x
y=0 t(y) = t′(y), (compared to the clock case, note that here we

need to check the history, since this affects knowledge)
f x
Kiϕ

(t) = ∀t′ ∈ Rd(M) (t ∼x
i t′ ⇒ f x

ϕ (t′)),
where t ∼x

i t′ is
∧x

j=0 Oi(t(j)) = Oi(t′(j)),
f x
CGϕ

(t) = gk(t), where gk is the first element of the sequence defined by g0 =

λt(f x
ϕ (t)) and g j+1 = λt(∀t′ ∈ Rd(M)(∀i ∈ G(t ∼x

i t′ ⇒ g j(t′)))), with gk = gk+1.

The following result characterizes perfect recall model checking using these values:

Theorem 5. M |=spr φ is equivalent to ∀t ∈ Rd(M) (f 0
φ (t)).

6.3 MCK Algorithm spec spr g

This algorithm deals with formulae of the form G(ϕ), where ϕ is formula in which the
only modal operator is Ki, for a single agent i. Call a set of states U ⊆ S an spr-
knowledge set for agent i if U = {r′e(m) | ∃r′ ∈ Rspr(M)(ri(m) = r′i (m))}, where (r,m) is
a point of Ispr(M). The algorithm works by enumerating all spr-knowledge sets U for
agent i, and checking whether the formula ϕ holds at all points in the Kripke structure
(U,U × U, π), in which the equivalence relation used to interpret Ki is the universal
relation U × U on U.

To obtain OBDD representations of the knowledge sets U, we proceed by an itera-
tive procedure. Let O be the set of all values of Oi. Define the relation U → U′ for sets
U,U′ ⊆ S to hold if for some o ∈ O we have U′ = {t ∈ S fair | ∃s ∈ U(s→ t)∧Oi(t) = o}.
Given an OBDD representation of U, we can easily obtain an OBDD representation of
U′.

At time 0, we have knowledge sets U0 = {I ∩ {s ∈ S | Oi(s) = o} ∩ S fair | o ∈ O}.
LetU∞ be the smallest set containingU0 and closed under relation→ on subsets of S .
The setU∞ is finite, and may be constructed using a depth or breadth first search from
U0.

Theorem 6. M |=spr G(ϕ) iff (U,U × U, π) |= ϕ for all U ∈ U∞.

This gives an algorithm that operates symbolically for each U, represents the set
U∞ by listing all its elements. Since this set is potentially of size 2|S |, the algorithm is
unlikely to be practical when M has a large number of spr-knowledge sets.

7 Model Checking Asynchronous Perfect Recall

Temporal-epistemic specifications are concerned with how agents’ knowledge changes
over time. Under the synchronous perfect recall and clock semantics, each transition
causes a change in the agents’ state of knowledge, so that XkKiφ says that in agent i’s
k-th state of information in each run, Kiφ holds. No such correspondence between time

and states of information holds under asynchronous semantics for knowledge, where
in k steps, the agent may go through any number between 1 and k different states of
information.

In order to reinstate such a correspondence, it is convenient to introduce a new
operator Xi, such that, intuitively, Xiφ says that if there exists a later time where agent
i’s local state differs from its current local state, then while the agent is in that next local
state, the formula φ holds. More precisely, the semantics of this operator is given by
I, (r,m) |= Xiφ if either ri(m) = ri(m′) for all m′ ≥ m, or, for the least m′ > m such that
ri(m) , ri(m′), we have I, (r, k) |= φ for all k ≥ m′ such ri(m′) = ri(m′+1) = . . . = ri(k).
Thus, the specification Xd

i φ, evaluated at time 0, states that at all points where agent i
has made exactly d + 1 observations, φ holds.

7.1 MCK Algorithm spec apr xn

An algorithm resembling that of Section 6.1 can be developed for specifications of the
form Xd

i ϕ, where the only modal operator in ϕ is the operator Ki. We again use functions
Pk : Ok ×S → {0, 1} for k = 1 . . . d + 1 such that, intuitively, Pk(o0 . . . ok−1, s) = 1 just in
case there exists a (not necessarily fair) run r and a time m where ri(m) = o0 . . . ok−1 and
re(m) = s, and a function Tϕ : Od+1 × S → {0, 1}, with Tϕ(oo...od, s) = 1 just in case for
all runs r and times m with ri(m) = o0 . . . od and re(m) = s, we have I(M), (r,m) |=apr ϕ.
(Note that because of asynchrony, we are no longer assured that m = d + 1, as we had
in the synchronous case: m may be arbitrarily large.) Let →= and →, be the relations
on states defined by s →= t if s → t and Oi(s) = Oi(t), and s →, t if s → t and
Oi(s) , Oi(t). The function P(o1...od, s) can be computed as follows.

1. P1(o0, s) = s ∈ reach(I,→=) ∧ (Oi(s) = o0),
2. Pk+1(o1...ok+1, s) = ∃t, t′ ∈ S (P(o1...ok, t) ∧ t →, t′ ∧ t′ →∗= s ∧ Oi(s) = ok+1)

The function Tϕ(o1...od, s) can be computed recursively by

1. Tp(o0...od, s) = (p ∈ π(s))
2. Tϕ1∧ϕ2 (o0...od, s) = Tϕ1 (o0...od, s) ∧ Tϕ2 (o0...od, s)
3. T¬ϕ(o0...od, s) = ¬Tϕ(o0...od, s)
4. TKiϕ(o0...od, s) = ∀t ∈ S (P(o0...od, t) ∧ t ∈ S f air ⇒ Tϕ(o0...od, t))

OBDD representations of all of these functions can be computed, and the algorithm
then uses the characterization in the following result:

Theorem 7. M |=apr Xd
i ϕ is equivalent to truth of ∀o0....od ∈ O∀s ∈ S (P(o0...od, s) ∧

s ∈ S f air ⇒ Tϕ(o0...od, s)).

7.2 MCK Algorithm spec apr g

It is also possible to adapt the algorithm of Section 6.3 to the asynchronous perfect
recall semantics. The class of formulas is the same, i.e., formulas of the form G(ϕ),
where ϕ is a formula in which the only modal operator is Ki, for a single agent i. The
approach of the algorithm is again to deal with knowledge sets for agent i, in this case,

defined as sets of the form {r′e(m′) |r′ ∈ Rapr(M), m′ ∈ N, ri(m) = r′(m′)} where (r,m)
is a point of Iapr(M). Note that in the case of the asynchronous perfect recall semantics,
the times m,m′ may differ, with no bounds on m′. As before, we represent knowledge
sets as OBDDs, and enumerate them by a depth or breadth first search. The difference
is that we now need a fixpoint computation to construct a knowledge set.

Define the relation U →apr U′ for sets U,U′ ⊆ S to hold if for some o ∈ O we
have U′ = {t′ ∈ S fair | ∃s ∈ U∃t ∈ S (s →, t) ∧ (t →∗= t′) ∧ Oi(t′) = o}. Given an
OBDD representation of U, we can easily obtain an OBDD representation of U′, using
a fixpoint computation to deal with→∗=.

At time 0, we have the collection of knowledge sets

U0 = { {t ∈ S fair |∃s ∈ I(s→∗= t ∧ Oi(t) = o)} | o ∈ Oi(I)} .

Let U∞ be the smallest set containing U0 and closed under relation →apr on subsets
of S . The setU∞ is finite, and may be constructed using a depth or breadth first search
fromU0.

Theorem 8. M |=apr G(ϕ) iff (U,U × U, π) |= ϕ for all U ∈ U∞.

8 Conclusion

Due to space limitations, a high level of dependence of performance on the application
example, and incomparability of the semantics and range of applicability of the algo-
rithms, we omit performance results. However, the algorithms, particularly those for
synchronous and asynchronous perfect recall, have successfully been used in a range of
nontrivial application studies, e.g. [17, 2, 1], that report performance data.

References

1. Omar I. Al-Bataineh and Ron van der Meyden. Abstraction for epistemic model
checking of dining cryptographers-based protocols. CoRR, abs/1010.2287, 2010.

2. K. Baukus and R. van der Meyden. A knowledge based analysis of cache coher-
ence. In ICFEM, volume 3308 of LNCS, pages 99–114. Springer, 2004.

3. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. In LICS. IEEE, 1990.

5. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
6. K. Engelhardt, P. Gammie, and R. van der Meyden. Model checking knowledge

and linear time: PSPACE cases. In LFCS, pages 195–211, 2007.
7. R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge.

The MIT Press, 1995.
8. P. Gammie and R. van der Meyden. Mck: Model checking the logic of knowledge.

In CAV, pages 479–483, 2004.
9. J.Y. Halpern and Y. Moses. Characterizing solution concepts in games using

knowledge-based programs. In IJCAI, pages 1300–1307, 2007.

10. X. Huang and R. van der Meyden. The complexity of epistemic model checking:
Clock semantics and branching time. In ECAI, pages 559–554, 2010.

11. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. J. ACM, 47(2):312–360, 2000.

12. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verifi-
cation of multi-agent systems. In TACAS, 2006.

13. A. Lomuscio and F. Raimondi. The complexity of model checking concurrent
programs against ctlk specifications. In AAMAS, pages 548–550. ACM, 2006.

14. Y. Shoham and K. Leyton-Brown. Muti-agent Systems: Algorithmic, game-
theoretic and logical foundations. Cambridge University Press, 2009.

15. K. Su, A. Sattar, and X. Luo. Model checking temporal logics of knowledge via
OBDDs. The Computer Journal, 50(4):403–420, 2007.

16. R. van der Meyden and N. Shilov. Model checking knowledge and time in systems
with perfect recall. In Conference on Foundations of Software Technology and
Theoretical Computer Science, LNCS, volume 1738, pages 432–445, 1999.

17. R. van der Meyden and K. Su. Symbolic model checking the knowledge of the
dining cryptographers. In CSFW, 2004.

