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Abstract
Weak equivalences are important behavioral equivalences in the course of spec-

ifying and analyzing reactive systems using process algebraic languages. In this
paper, we propose a series of weak equivalences named weak parametric readi-
ness equivalences, which take two previously-known behavioral equivalences, i.e.,
the weak readiness equivalence and the weak possible future equivalence, as their
special cases. More importantly, based on the idea of Structural Operational Se-
mantics, a series of rule formats are further presented to guarantee congruence
for these weak parametric readiness equivalences, i.e., to show that the proposed
rule formats can guarantee the congruence of their corresponding weak parametric
readiness equivalences. This series of rule formats reflect the differences in the
weak parametric readiness equivalences. We conclude that, when the weak para-
metric readiness equivalences become coarser, their corresponding rule formats
turn tighter.

1 Introduction
Behavioral equivalence is based on observability and thus equivalences may differ by
the notions of observability [1, 2]. A natural classification of behavioral equivalence
is that a given behavioral equivalence may be strong or weak. Their difference stems
from the ways of dealing with the internal transitions, which are generally denoted as
τ transitions. Strong equivalences regard τ transitions as the observable actions. Weak
equivalences, on the other hand, suppose them unobserved by the outer-world. In this
paper, we will focus on the weak equivalences.

Among various weak semantic equivalences, the weak readiness equivalence and
the weak possible future equivalence are two interesting semantic equivalences. The
∗This research was financially supported by the National Natural Science Foundation of China (No.

60421001).

1



readiness equivalence, which is the strong counterpart of weak readiness equivalence,
was proposed by Olderog and Hoare [3], and possible future semantics, which is the
strong counterpart of weak possible future equivalence, was proposed by Rounds and
Brooks [4]. Besides their previous applications as important semantics for communi-
cating processes, Ryan [5] has explored the application of weak readiness semantics in
computer security by claiming that it is more intuitive to think it in terms of the weak
readiness equivalence than in weak failure equivalence. However, as will be shown in
the paper, weak readiness equivalence is not congruent on the hiding operator of CSP
[6]. On the other hand, weak possible future equivalence is congruent on the hiding
operator. Therefore, we can anticipate the use of weak possible future equivalence in
computer security.

Technically speaking, weak possible future equivalence is strictly finer than weak
readiness equivalence. The weak readiness semantics is usually denoted, by its de-
notational characterization, as a set of weak readiness pairs. Two processes are weak
readiness equivalent iff they have the same sets of weak readiness pairs. Likewise, the
weak possible future semantics is usually denoted as a set of weak possible future pairs
and two processes are weak possible future equivalent iff they have the same sets of
weak possible future pairs.

Looking into the two pairs, we find that their first parameters both express the abili-
ties: some process p executes a sequence of observable actions and evolves into another
process p′. The difference exists in their second parameters. The second parameter of
a weak readiness pair is the set of actions enabled by p′, and the second parameter of a
weak possible future pair is the set of action sequences enabled by p′.

Based on these observations, we define a series of weak equivalences, called weak
parametric readiness equivalences. Like the above two weak equivalences, a weak i-
readiness pair with i ∈ N ∪ {ω} is only different in its second parameter from the weak
readiness pair, where N is the set of natural numbers and ω is the cardinality of N. Its
second parameter is the set of action sequences enabled by p′ and the lengths of these
action sequences do not exceed i. Therefore, the plain weak readiness equivalence
is the weak 1-readiness equivalence in our framework and the weak possible future
equivalence is the weak ω-readiness equivalence. Furthermore, with the increasing of
parameter i, the weak i-readiness equivalence becomes finer.

Structural Operational Semantics (SOS) [7] has been widely used in defining the
meanings of the operators in various process algebraic languages, such as CCS [8]
and ACP [9]. The main idea of SOS is: each process is represented by a closed term
and has some out-going transitions to denote its behaviors. Each transition shows an
action which the process can take and then evolves into another process. Then, to each
n-ary syntactic symbol, a number of transition rules are assigned. These transition
rules specify how to generate the outgoing-transitions of f (x1, ..., xn) via the outgoing-
transitions of its arguments x1, ..., xn. Therefore, the behavior of f (p1, ..., pn) can be
deduced from the behaviors of p1, ..., pn and the transition rules of f .

Transition System Specifications (TSS’s) [10], which are borrowed from logic pro-
gramming, form a theoretical basis for SOS. By imposing some syntactic restrictions
on TSS’s, one can retrieve so-called rule formats. From a specified rule format, one
may deduce some interesting properties. Among these properties, one of the most im-
portant ones is whether or not a behavioral equivalence is congruent for a TSS in this
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rule format. As stated in [11], an equivalence relation ∼ is congruent on some TSS, if ∼
satisfies the compatibility property, which states that, for any n-ary function symbol f
in the TSS and processes pi, qi, if pi ∼ qi for 1 ≤ i ≤ n then f (p1, ..., pn) ∼ f (q1, ..., qn).
In the rest of the paper, a TSS is always called a language.

Up to now, some rule formats have been presented to meet the behavioral equiva-
lences, for examples, GSOS format [12] and ntyft/nxyft format [13] have been proved
to be congruent on strong bisimulation, de Simone [14] format was proved to be con-
gruent on failure equivalence, and so on. More works have been done on pursuing a
suitable rule format for a given strong equivalence. On the other hand, much less at-
tention was paid on the rule formats for weak equivalences. More specifically, to our
knowledge, no congruence formats have been presented for the weak readiness equiv-
alence or the weak possible future equivalence. Aceto, Fokkink and Verhoef [16] and
Mousavi, Reniers and Groote [17] have provided comprehensive overviews on the rule
formats.

In the paper, we will propose a series of rule formats for the newly defined weak
parametric readiness equivalences. In fact, weak 1-readiness format is presented for
the weak 1-readiness equivalence, weak finite readiness format for the weak i-readiness
equivalences with 1 < i < ω, and weak ω-readiness format for the weak ω-readiness
equivalence. Then, we prove that the weak parametric readiness equivalence can be
preserved after composition if the language is in its corresponding rule formats, i.e.,
these rule formats are all congruence formats for their corresponding equivalences.

Here, we want to sketch out two critical points in pursuing these rule formats:
The first critical point is on the feasibility of allowing the rules with τ-conclusion.

Rules with τ-conclusion are an important class of rules in classical process algebraic
languages, notable examples include a transition rule of the hiding operator of CSP and
a transition rule of the parallel composition operator of CCS.

x
a
−→ x′

x/A
τ
−→ x′/A

a ∈ A (1)

x
a
−→ x′, y

b
−→ y′

x|y
τ
−→ x′|y′

(a, b) ∈ f (2)

However, not all behavioral equivalences can be preserved under these rules, such as,
the acceptance testing equivalence may not be preserved under the hiding operator
[15]. In this paper, we will take a close look into these rules. In fact, the weak i-
readiness equivalences with i < ω may not be preserved under these rules, but the
weak ω-readiness equivalence, i.e., the weak possible future equivalence, can survive
these rules.

The second critical point is whether or not the patience rules for receiving argu-
ments are necessary in the rule formats for a given weak parametric readiness equiv-
alence. Patience rules, which are used to smooth the evolvement of τ transitions of
subprocesses, are usually necessary in rule formats for weak equivalences. For ex-
ample, assume process a|τb and the other two transition rules of parallel composition
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operator besides expression (2).

p
a
−→ p′

p|q
a
−→ p′|q

,
q

a
−→ q′

p|q
a
−→ p|q′

(3)

Patience rule q
τ
−→ q′

p|q
τ
−→ p|q′

will be applied before the communication of subprocesses a

and b. However, since patience rules are defined in accordance with the arguments of
an operator, they can be divided into three classes: patience rules for active arguments,
patience rules for receiving arguments and patience rules for other arguments [19, 20].
Though patience rules for active arguments are generally needed, we find that, patience
rules for receiving arguments are not necessary for some rule formats. For example,
for the weak 1-readiness format, patience rules for receiving arguments are not neces-
sary because of the exclusion of rules with τ-conclusion. On the other hand, they are
necessary for the weak i-readiness format with i > 1.

As a result, the weak finite readiness format is tighter than the weak ω-readiness
format because the rules with τ-conclusion should be excluded from the language in
the weak finite readiness format, and the weak 1-readiness format is tighter than the
weak finite readiness format since it may further exclude the patience rules for receiv-
ing arguments from the language. Therefore, we can conclude that, when the weak
parametric readiness equivalences become coarser, their corresponding rule formats
turn tighter.

Finally, we want to say more on the newly-proposed weak i-readiness equivalences
with 1 < i < n. We have not found their precise applications, though they can be used
in most applications of the 1-readiness equivalences. The reasons that we introduce
these intermediate weak equivalences are that

1) they can smooth the changes between the weak 1-readiness equivalence and the
weak ω-readiness equivalence,

2) their congruence format is also an intermediate format between the weak 1-
readiness format and the weak ω-readiness format, and

3) most importantly, we want to make clear the technical reasons why there ex-
ist differences between the weak 1-readiness format and the weak ω-readiness format.
Take it more concrete, from the weak ω-readiness format to the weak 1-readiness for-
mat, the reason why the rules with τ conclusion are excluded is that the parameter i
degrades from infinite to finite, and the reason why the patience rules for receiving
arguments are not necessary is that, no matter how they are presented in the language,
only the set of next one, but not next finite or infinite, observable actions remains
unique.

The structure of this paper is: in Section 2, we will introduce some preliminaries,
mainly on the behavioral equivalences and the rule formats in Structural Operational
Semantics. Then in Section 3, we will put forward the formal definitions of the weak
parametric readiness equivalences. Intuitive motivations on their rule formats will be
illustrated by examples in Section 4. Section 5 is devoted to the formal definitions of
the three congruence formats, and the proofs on the congruence theorems. And then,
in Section 6, we will conclude the paper.
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2 Preliminaries on Behavior Equivalences and Rule For-
mats

Let Act denote a set of names which will be used to label events and Act∗ be the set of
all action sequences. We usually use a, b, ... to range over the actions in Act, and use
A, B, ... to range over subsets of actions in Act. τ is generally used to denote the internal
action which can not be observed by the outer world, and we use α, β, ... to range over
the actions in Act ∪ {τ}. δ, µ, σ, ... is to range over the sequences of actions. Φ,Ψ, ... is
to range over the sets of sequences. p, q, ... will be used to represent processes.

Any behavioral semantics of some process p can be characterized by a function
O(p) [1]. O(p) constitutes the observable behaviors of p. The equivalence relation ∼O
can be defined by p ∼O q ⇐⇒ O(p) = O(q). The readers are referred to van Glabbeek
[1, 2] for comprehensive reviews of the behavioral equivalences.

SOS has been widely accepted as a tool to define operational semantics of pro-
cesses. A TSS is a formalization of SOS [7]. The readers are referred to Aceto, Fokkink
and Verhoef [16] for a comprehensive review on SOS.

Definition 2.1 [16] Let V = {x1, x2, ...} be a set of variables. A signature Σ is a
collection of function symbols f < V equipped with a function ar : Σ → N. The set
T(Σ) of terms over a signature Σ is defined recursively by: 1) V ⊆ T(Σ); 2) if f ∈ Σ and
t1, ..., tar( f ) ∈ T(Σ), then f (t1, ..., tar( f )) ∈ T(Σ).

A term c() is abbreviated as c. For t ∈ T(Σ), var(t) denotes the set of variables
that occur in t. T(Σ) is the set of closed terms over Σ, i.e., the terms p ∈ T(Σ) with
var(p) = ∅. A Σ substitution ζ is a mapping from V to T(Σ), and therefore, a closed Σ

substitution ζ is a mapping from V to T(Σ).
Definition 2.2 A positive Σ-literal is an expression t

α
−→ t′ and a negative Σ-literal

is an expression t
α
9 with t, t′ ∈ T(Σ) and α ∈ Act ∪ {τ}. A transition rule over Σ is

an expression of the form H
C with H a set of Σ literals (the premises of the rule) and C

a positive Σ-literal (the conclusion). The left- and right-hand side of C are called the
source and the target of the rule, respectively. Moreover, if r = H

t
α
−→ t′

then define

ante(r) = H, cons(r) = {t
α
−→ t′}, and the output of r as α.

A TSS, written as (Σ,Ψ), consists of a signature Σ and a set Ψ of transition rules
over Σ. A TSS is positive if the premises of its rules are positive.

Definition 2.3 Let Σ be a signature. A context C of n holes over Σ is simply a term
in T(Σ) in which n variables occur, each variable only once. If t1, ..., tn are terms over
Σ, then C(t1, ..., tn) denotes the term obtained by substituting t1 for the first variable
occurring in C, t2 for the second variable occurring, etc. Thus, if x1, ..., xn are all
different variables, then C(x1, ..., xn) denotes a context of n holes in which xi is the ith
occurring variable.

Then, we can give the definition on the congruence of an equivalence in a language.
Definition 2.4 Let L = (Σ,Ψ) be a language. An equivalence relation ∼ is congru-

ent on language L iff ∀i ∈ {1, ..., n} : pi ∼ qi =⇒ C(p1, ..., pn) ∼ C(q1, ..., qn) for any
context C of n holes in language L, where pi and qi are closed terms, i.e., processes,
over Σ.

Definition 2.5 Let Σ be a signature. A transition relation over Σ is a relation Tr
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⊆ T(Σ) × (Act ∪ {τ})× T(Σ). Element (p, α, p′) of a transition relation is written as
p

α
−→ p′.

Thus a transition relation over Σ can be regarded as a set of closed positive Σ-
literals(transitions).

Furthermore, for an action sequence δ = α1...αn, if there exist p1, ..., pn ∈ T(Σ)

such that p
α1
−→ p1

α2
−→ ...

αn
−→ pn, then we call δ a trace of p, denoted as p

δ
−→ or

p
α1
−→ ...

αn
−→.

In weak semantics, the weak transition relations and the weak traces are also needed
to be defined. Let p be a process, we write p

a
=⇒ iff p

τ∗

−→
a
−→

τ∗

−→, where τ∗ denotes any
number of internal transitions. Hence, for an observable action sequence δ = a1...an,

p
δ

=⇒ iff p
a1

=⇒ ...
an

=⇒.
By imposing some syntactic constraints on TSS’s, we will obtain the so-called rule

formats with some properties on their induced operational semantics. Within these
properties, it is specially important that whether a behavioral equivalence can be pre-
served in the languages with this format. Some rule formats have been proposed to
meet the numerous behavioral equivalences, such as GSOS format, de Simone format,
ntyft/nxyft format, etc. The readers are referred to Mousavi, Reniers and Groote [17]
for the latest review on the rule formats.

The de Simone language will be employed as our starting point in retrieving the
rule formats for the weak parametric readiness equivalences.

Definition 2.6 [14] Let Σ be a signature. A transition rule r is in de Simone format

if it has the form {xi
ai
−→ yi}i∈I

f (x1, ..., xar( f ))
a
−→ t

, where I ⊆ {1, ..., ar( f )} and the variables xi and

yi are all distinct and the only variables occuring in r. Moreover, the target t ∈ T(Σ)
does not contain variable xi for i ∈ I and has no multiple occurrence of variables.

Moreover, a language L = (Σ,Ψ) is in de Simone format if all transition rules in Ψ

are in de Simone format. Besides, we also call L = (Σ,Ψ) a de Simone language if it
is in de Simone format.

Below, two special classes of rules are defined. They will be discussed in the paper.
The first class is the patience rules, and the second class is the rules with τ-conclusion.

Definition 2.7 [18, 19] LetL = (Σ,Ψ) be a de Simone language, and f be a function

symbol in Σ. A rule of the form
xi

τ
−→ x′i

f (x1, ..., xi, ..., xn)
τ
−→ f (x1, ..., x′i , ..., xn)

with 1 ≤ i ≤ n

is called a patience rule of the ith argument of f .
In the following, a rule is called a plain rule if it is not a patience rule.
Definition 2.8 [20] Let L = (Σ,Ψ) be a de Simone language, and f be a function

symbol in Σ. An argument i ∈ N of an operator f is active if f has a rule in which xi

appears as left-hand side of a premise. A variable x occurring in a term t is receiving in
t if t is the target of a rule in which x is the right-hand side of a premise. An argument
i ∈ N of an operator f is receiving if a variable x is receiving in a term t that has a
subterm f (t1, ..., tn) with x occurring in ti.

Then, the set of all arguments Arg of an operator can be divided into three classes:
active arguments Arga, receiving arguments Argr and others Argo, which is inspired by
van Glabbeek [20]. Therefore, Arg = Arga + Argr + Argo.
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Similarly, patience rules of an operator can be divided into three classes. It should
be noted that an argument may be both an active argument and a receiving argument,
i.e., Arga∩Argr , φ. However for clarity, from now on, if we say that an argument is a
receiving argument, then it should not be an active argument , i.e., receiving arguments
below are only those receiving arguments which are not active arguments simultane-
ously. Therefore, Arga, Argr and Argo will be disjoint.

Definition 2.9 LetL = (Σ,Ψ) be a de Simone language, and f be a function symbol
in Σ. A rule of the form H

f (x1, ..., xn)
τ
−→ t

is called a rule with τ-conclusion, if it is not

a patience rule and there exists at least one positive Σ literal in H.
A notable example of the rules with τ-conclusion, which will be used in Section

4.2, is the first transition rule of the hiding operator in CSP as follows.

p/A : p
α
−→ p′

p/A
τ
−→ p′/A

α ∈ A p
α
−→ p′

p/A
α
−→ p′/A

α < A

Like the definition of a rule with τ-conclusion, a transition rule is a rule with τ-
premise iff there exists a positive Σ literal like t

τ
→ t′ in its premises. It is trivial that

patience rules are rules with τ-premise.
Before concluding this section, we will presume a small set of operators with de-

fault operational semantics:
nil : means successful termination.
a · X : a · X

a
−→ X

X � Y : X
a
−→ X′

X � Y
a
−→ X′

Y
a
−→ Y ′

X � Y
a
−→ Y ′

X
τ
−→ X′

X � Y
τ
−→ X′ � Y

Y
τ
−→ Y ′

X � Y
τ
−→ X � Y ′

X ⊕ Y : X ⊕ Y
τ
−→ X X ⊕ Y

τ
−→ Y

X B Y : X
a
−→ X′

X B Y
a
−→ X′

X
τ
−→ X′

X B Y
τ
−→ X′ B Y

X B Y
τ
−→ Y

where a ∈ Act. We call this language B [21].

3 Weak Parametric Readiness Equivalences
Before presenting the formal definitions of the weak parametric readiness equivalences,
two canonical equivalences, i.e., the weak readiness equivalence and the weak possible
future equivalence, will be introduced. As we will see, they both are the special cases
of the weak parametric readiness equivalences.

Definition 3.1 (σ, A) ∈ Act∗ ×P(Act) is a weak readiness pair of process p iff there
exists some p′ such that p

σ
=⇒ p′ ∧ A = S(p′), where S(p′) = {a ∈ Act | p′

a
=⇒}. The

set of all weak readiness pairs of process p is called the weak readiness of p, denoted
as R(p).

Weak Readiness Equivalence ∼r: for any two processes p and q, p ∼r q iff R(p) =

R(q).
Definition 3.2 (σ,Φ) ∈ Act∗×P(Act∗) is a weak possible future pair of process p iff

there exists some p′ such that p
σ

=⇒ p′∧Φ = T (p′), whereT (p′) = {δ ∈ Act∗ | p′
δ

=⇒}.
The set of all weak possible future pairs of process p is called the weak possible future
of p, denoted as PF (p).
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Weak Possible Future Equivalence ∼p f : p and q are two processes, p ∼p f q iff
PF (p) = PF (q).

As can be seen in the above definitions, the difference between the weak readiness
pair and the weak possible future pair exists on their second parameters. The second
parameter of the weak readiness pair is a set of actions enabled by p′. From this respect,
we may also say in the paper that weak readiness semantics sees an observable action
ahead. On the other hand, the second parameter of the weak possible future pair is a
set of action sequences enabled by p′ and hence it is said that the weak possible future
semantics sees ω observable actions ahead.

By the above observation, we put forward the definition on the weak parametric
readiness equivalences:

Definition 3.3 (σ,Φ) ∈ Act∗ × P(Act∗) is a weak i-readiness pair of process p iff
there exists some p′ such that p

σ
=⇒ p′ ∧ Φ = T (p′, i), where T (p′, i) = {δ ∈ Act∗ |

p′
δ

=⇒ ∧|δ| 6 i}. The set of all weak i-readiness pair of process p is called the weak
i-readiness of p, denoted as R(p, i).

Weak Parametric Readiness Equivalences ∼i
r: for any two processes p and q,

p ∼i
r q iff R(p, i) = R(q, i).
Also, we will often say that p and q are weak i-readiness equivalent if p ∼i

r q.
It is trivial that, in this framework, the weak readiness equivalence is the weak 1-

readiness equivalence and the weak possible future equivalence is the weakω-readiness
equivalence. In fact, S(p′) = T (p′, 1) and T (p′) = T (p′, ω).

The theorem below states that if p and q are weak j-readiness equivalent with
1 ≤ j ≤ ω, then they are also weak i-readiness equivalent for i < j.

Theorem 3.4 Let 1 ≤ i < j ≤ ω, p and q are two processes. If p ∼ j
r q then p ∼i

r q.
Proof By the definition of weak parametric readiness equivalences, p ∼ j

r q iff
R(p, j) = R(q, j). Then, R(p, i) = R(q, i) can be obtained from Definition 3.3, R(p, j) =

R(q, j) and 1 ≤ i < j ≤ ω. Therefore, p ∼i
r q. �

4 Intuitive Motivations on Rule Formats
This section gives several representative examples to show some intuitive motivations
on the rule formats of the weak parametric readiness equivalences. However, we do
not want to discuss them from the scratch, only the two critical points sketched in the
introduction are to be mentioned: the first subsection is to observe the feasibility of
adding rules with τ-conclusion; the second subsection is to inspect the necessity of
the patience rules for receiving arguments. Besides, in the third subsection, we will
make a discussion by means of a simple example on the infeasibility of introducing the
negative premises into a rule, when confronted with a weak equivalence.

It should be noted that, in this section, we are mainly concerned the intuitive mo-
tivations. The results retrieved in this section will be formally defined and proved in
the next section. Also, as the starting point, we assume the basic language B which has
been introduced in section 2.
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Figure 1: p and q are weak 1-readiness equivalent, but p/{d} and q/{d} are not weak
1-readiness equivalent.

Figure 2: p1 and q1 are weak 2-readiness equivalent, but p1/{d} and q1/{d} are not
weak 2-readiness equivalent.

4.1 On Rules with τ-conclusion
Let’s consider the example in Figure 1 and Figure 2. Firstly, the two graphs in Figure 1,
i.e., p and q, are weak 1-readiness equivalent. However, after hiding d actions, p/{d} is
not weak 1-readiness equivalent to q/{d}, which can be seen from the weak 1-readiness
pair (a, {b, c}) ∈ R(p/{d}, 1) but (a, {b, c}) < R(q/{d}, 1). If we take the weak 2-readiness
equivalence into consideration, we will find that p and q are not yet weak 2-readiness
equivalent.

As for the weak 2-readiness equivalence, p1 and q1, the two graphs in Figure 2,
are weak 2-readiness equivalent. However, this equivalence also cannot be preserved
after hiding d actions. In fact, for any weak i-readiness equivalence with i < ω, a
similar counterexample exists. On the contrary, the weak ω-readiness equivalence can
be preserved under the hiding operator.

Generalizing to all rules with τ-conclusion, a common characterization of these
rules is that they all consume the observable actions of the subprocesses and produce
τ transitions at the same time. Therefore, we conjecture that any weak i-readiness
equivalence with i < ω will probably be broken under the rules with τ-conclusion, but
the weak ω-readiness equivalence will be preserved.
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Figure 3: p1 and q1, p2 and q2 are weak i-readiness equivalent for i ∈ N ∪ {ω}.

4.2 Patience Rules for Receiving Arguments

Consider adding the rules r1 =
x1

c1
−→ x′1, x2

c2
−→ x′2

f (x1, x2)
a1
−→ g(x′1, x

′
2)

, r2 =
x1

b1
−→ x′1

g(x1, x2)
a2
−→ h(x2)

, r3 =

x1
b3
−→ x′1

h(x1)
b3
−→ nil

, r4 =
x1

b2
−→ x′1

h(x1)
b2
−→ nil

and their associated patience rules for active argu-

ments into language B.
By Definition 2.8, to decide the division of some argument of a given operator f ,

we need to take into consideration all transition rules in which operator f appears.
Definition 2.8 says that, if f has a rule in which xi appears as left-hand side of a

premise then xi is an active argument. For the case of operator g(x1, x2) as above, x1 is
an active argument since it appears as left-hand side of the premise of rule r2. On the
other hand, x2 is not an active argument, because no transition rule of operator g(x1, x2)
has x2 as left-hand side of one of its premises.

Then, x1 and x2 are both receiving arguments by rule r1. Therefore, x1 is both
active and receiving, and x2 is a receiving argument.

Now, by the statement after Definition 2.8, an argument will be active if it is both
active and receiving. Therefore, x1 should be classified as active argument.

In all, for the case of operator g(x1, x2) as above, x1 is an active argument and x2 is
a receiving argument.

Let p1, p2, q1 and q2 be the processes shown in Figure 3. It can be easily veri-
fied that p1 ∼

1
r q1 and p2 ∼

1
r q2. According to the above rules, we have f (p1, p2)

and f (q1, q2) shown in the two graphs of Figure 4. Now, f (p1, p2) and f (q1, q2) are
also weak 1-readiness equivalent, i.e., f (p1, p2) ∼1

r f (q1, q2). Therefore, it seems that
patience rules for receiving arguments are not necessary for weak 1-readiness equiva-
lence.

For the weak 2-readiness equivalence, we also have p1 ∼
2
r q1 and p2 ∼

2
r q2.

f (p1, p2) and f (q1, q2) are not weak 2-readiness equivalent yet, because (a1, {a2b2})
is a weak 2-readiness pair of f (p1, p2) but not a weak 2-readiness pair of f (q1, q2).
Hence, the weak 2-readiness equivalence is not preserved under the above rules. How-
ever, if we further add patience rule for the second argument of g(x1, x2) into language
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Figure 4: f (p1, p2) and f (q1, q2) are weak 1-readiness equivalent but not weak 2-
readiness equivalent.

Figure 5: f (p1, p2) and f (q2, q2) are weak 2-readiness equivalent.

B, then f (p1, p2) and f (q1, q2) are the two graphs in Figure 5. Now, it can be easily
verified that f (p1, p2) ∼2

r f (q1, q2). Therefore, adding the patience rules for receiving
arguments may preserve the weak 2-readiness equivalence.

In fact, we will assert, in the next section, that the patience rules for receiving
arguments are necessary for the weak i-readiness equivalence with i > 1, but, they are
not necessary for the weak 1-readiness equivalence.

4.3 Negative Premises Are Not Allowed
In fact, negative premises are hard to present in the congruence formats for any weak
equivalences. This can be witnessed by a simple example shown in Figure 6: p2 and
q2 satisfy almost all weak equivalences, including weak bisimulation. However, after

adding rule r =
x1

a
−→ x′1, x2

a
9

f (x1, x2)
d
−→ g(x′1, x2)

into language B, f (p1, p2) and f (q1, q2) are not

even in weak trace equivalence.
Certainly, as stated in Section 2, we will employ the de Simone format as our

starting point. And, no negative premises are allowed in the definition of de Simone
format.

11



Figure 6: negative premises are not allowed in congruence formats for weak equiva-
lences

5 Rule Formats for Weak Parametric Readiness Equiv-
alence

This section will present formally the rule formats for the weak parametric readiness
equivalences. In fact, as stated in the introduction, we will present three different rule
formats: weak 1-readiness format for the weak 1-readiness equivalence, weak finite
readiness format for the weak i-readiness equivalence with 1 < i < ω and weak ω-
readiness format for the weak ω-readiness equivalence.

5.1 Formal Definitions on the Rule Formats
Now, we put forward the weak 1-readiness format, which will be proved to be a con-
gruence format for the weak 1-readiness equivalence.

Definition 5.1.1 A de Simone language L is in weak 1-readiness format if
1) patience rules are the only rules with τ-premises,
2) patience rules for active arguments of all operators are necessary,
3) rules with τ-conclusion are not permitted.
Following it, the weak finite readiness format is:
Definition 5.1.2 A de Simone language L is in weak finite readiness format if
1) patience rules are the only rules with τ-premises,
2) patience rules for active arguments and receiving arguments of all operators are

all necessary,
3) rules with τ-conclusion are not permitted.
Then, the weak ω-readiness format for the weak ω-readiness equivalence is to be

presented.
Definition 5.1.3 A de Simone language L is in weak ω-readiness format if
1) patience rules are the only rules with τ-premises, and
2) patience rules for active arguments and receiving arguments of all operators are

all necessary.
It should be pointed out that the exclusion of rules with τ-conclusion and the al-

lowance of dropping the patience rules for receiving arguments are not two separated
restrictions. In fact, to obtain the effect of the allowance of dropping the patience rules
for receiving arguments in the weak 1-readiness format, the exclusion of rules with
τ-conclusion is a precondition. We will prove this conclusion in Lemma 5.3.5.
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Below, we will study the relations between the above three rule formats. To fulfil
this purpose, we need to define the ’tighter than’ relation between rule formats.

Definition 5.1.4 Let A and B be two rule formats. A is tighter than B iff, for any
language L = (Σ,Ψ) in format A, all transition rules in Ψ are also in format B. More-
over, A is strictly tighter than B iff A is tighter than B and there exists some languages
L = (Σ,Ψ) in format B such that at least one of the transition rules in Ψ are not in
format A.

Theorem 5.1.5 The weak 1-readiness format is strictly tighter than the weak finite
readiness format and the weak finite readiness format is strictly tighter than the weak
ω-readiness format.

Proof Comparing Definition 5.1.1 and Definition 5.1.2, patience rules for receiv-
ing arguments are not yet necessary for weak 1-readiness format. Therefore, for any
languages L in weak 1-readiness format, its transition rules will also be in weak finite
readiness format. Likewise, Definition 5.1.2 and Definition 5.1.3 are only different on
the rules with τ-conclusion. Therefore, after refusing all rules with τ-conclusion, any
languages L in weak finite readiness format will have its transition rules in the weak
ω-readiness format.

The strictness between weak 1-readiness format and weak finite readiness format
can be witnessed by the languages in Section 4.2. After introducing the patience rules
for receiving arguments, it is a weak finite readiness language. However, patience rules
for receiving arguments are not in weak 1-readiness format. The strictness between
weak finite readiness format and weak ω-readiness format can be witnessed by intro-
ducing the hiding operator of CSP into any weak ω-readiness language. The obtained
languages are still weak ω-readiness languages. However, one of transition rules of
hiding operator is not in weak finite readiness format. �

Observe that, the ’tighter than’ relation is not the same as ’contained in’ relation,
which requires that, format A is contained in format B iff, any language L = (Σ,Ψ) in
format A will also be in format B. It can be easily proved that, ’contained in’ relation
implies ’tighter than’ relation, but not vice versa. Indeed, the weak 1-readiness format
is tighter than the finite readiness format, but is not contained in the finite readiness
format.

5.2 Ruloids And Ruloid Theorems On The Three Formats
Ruloids and the ruloid theorem originated from the works of Bloom [19, 22] for the
GSOS format. In this subsection, we will introduce the ruloids and the ruloid theorem
for the weak ω-readiness format. The ruloid theorems will be useful for proving the
congruence theorems in the following subsections. The results obtained in this subsec-
tion will also hold for the other two formats.

For a language L = (Σ,Ψ) in the weak ω-readiness format, the ruloids R(C, α), for
a context C of n holes and an action α, are a set of expressions like the transition rules:

{xi
αi
→ x′i }i∈I

C(x1, ..., xn)
α
→ D(y1, ..., yn)

(4)

such that yi ≡ x′i for i ∈ I and yi ≡ xi for i < I, where I ⊆ {1, 2, ..., n}. These expressions
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characterize all possible behaviors of the context C in the language. Besides, let R(C)
denote the set of all ruloids of the context C of n holes, i.e., R(C) =

⋃
{R(C, α)|α ∈

Act ∪ {τ}}.
It should be noted that context D does not need to have exactly n holes. In fact,

after leaving out the copying operation in the de Simone format (the weak ω-readiness
format is a subformat of the de Simone format), the number of the holes of D should
be less than or equivalent to n. But for convenience, in form (4), we still write it as
D(y1, ..., yn).

Furthermore, two properties should be imposed on R(C, α), we call them sound-
ness property and completeness property, by a bit of abusing the terminologies.

Definition 5.2.1 Let L = (Σ,Ψ) be a language in the weak ω-readiness format, and
C(x1, ..., xn) be any context of n holes in L. A set R(C, α) of ruloids of form (4) are
ruloids of context C and action α, with α ∈ Act ∪ {τ}, iff

1) Soundness. Let r ∈ R(C, α) be a ruloid of form (4). If ζ is a closed Σ substitution
such that ζ(xi)

αi
→ ζ(x′i ) for all i ∈ I, then there must exist a context D such that

ζ(C(x1, ..., xn))
α
→ ζ(D(y1, ..., yn)).

2) Completeness. Let ζ be any closed Σ substitution. If ζ(C(x1, ..., xn))
α
→, then

there must exist a ruloid r of form (4) in ruloids R(C, α), and ζ(xi)
αi
→ for all i ∈ I.

Below, we will present a strategy to retrieve the ruloids of context C and action α,
and then prove that the obtained ruloids satisfy the above two properties, which form
the ruloid theorem.

Strategy 5.2.2 Let L = (Σ,Ψ) be a language in the weak ω-readiness format.
C(x1, ..., xn) is any context of n holes in L and α ∈ Act ∪ {τ} is an action.

1) If C ∈ V , i.e., C is a variable, then R(C, α) = { x
α
→ x′

x
α
→ x′

};

2) If C = f (x1, ..., xn) with f ∈ Σ and ar( f ) = n, then R(C, α) = ( f , α), where ( f , α)
denotes the set of all rules in Ψ whose source is f (x1, ..., xn) and output is α.

3) If C is any context. We can rewrite C(x1, ..., xn) as f (C1(X1), ...,Cm(Xm)), where
f ∈ Σ and ar( f ) = m. Note that Xi ∩ X j = ∅ with 1 ≤ i, j ≤ m and i , j. Without
loss of generality, we may suppose that Xi = xi1xi2...ximi for Ci is a context of mi holes.
Now, let r be any ruloid of form (4) in ( f , α) and R(Ci, αi) be ruloids of context Ci and
action αi retrieved by induction on this strategy. Then, any ruloids in R(C, α) can be
obtained by the following steps:

i) pick out randomly from R(Ci, αi) a rule ri, for all i ∈ I;
ii) substitute the variables x j in ri with xi j, for all 1 ≤ j ≤ mi;
iii) substitute xi

αi
→ x′i in the premise of r with ante(ri), for all i ∈ I.

4) R(C, α) is the set of all possible ruloids that can be retrieved from step 3). �
Theorem 5.2.3 Let L = (Σ,Ψ) be a language in the weak ω-readiness format, and

C(x1, ..., xn) be any context of n holes in L. The set of ruloids R(C, α) obtained from
the Strategy 5.2.2 is the ruloids of context C and action α satisfies α ∈ Act ∪ {τ}.

Proof Firstly, the obtained ruloids R(C, α) of context C and action α are all in form
(4), which can be easily retrieved from the construction procedure in the Strategy 5.2.2.

Secondly, the obtained ruloids R(C, α) of context C and action α satisfy the sound-
ness property. Let r ∈ R(C, α) be a ruloid of form (4), where C is a context of n holes
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and α ∈ Act ∪ {τ} is an action. ζ is a closed Σ substitution such that ζ(xi)
αi
→ ζ(x′i ) for

all i ∈ I.
i) if C ∈ V , then, without loss of generality, suppose C = x. The soundness property

is trivial from R(C, α) = { x
α
→ x′

x
α
→ x′

};

ii) if C = f (x1, ..., xn), then R(C, α) = ( f , α). Therefore, the soundness property is
guaranteed by the transition rules;

iii) if C is any context of n holes, then by Strategy 5.2.2, C(x1, ..., xn) can be rewrit-
ten as f (C1(X1), ...,Cm(Xm)) for some operator f ∈ Σ and ar( f ) = m, and ante(r)
consist of ante(r1), ..., ante(rm), where ri ∈ R(Ci, αi) for all 1 ≤ i ≤ m. By the assump-
tion of the soundness property that ante(r) is enabled under closed Σ substitution ζ.
Therefore, by the induction hypothesis, cons(r1), ..., cons(rm) are all enabled under ζ.
This means that ζ(Ci(Xi))

αi
→ ζ(Di(Yi)) for all 1 ≤ i ≤ m. In fact, cons(r1), ..., cons(rm)

constitute ante( f ). By the induction hypothesis on operator f , the transition rules in
( f , α) guarantee the enableness of C(x1, ..., xn)

α
→.

Last, the obtained ruloids R(C, α) of context C and action α satisfy the complete-
ness property, which can also be easily retrieved from the construction procedure of
the Strategy 5.2.2. �

As we can see that, for a ruloid of form (4), its premises need not include all xi for
1 ≤ i ≤ n. However, we can add xi

ε
→ x′i , for i ∈ {1, ..., n}\I, into the premises, as

in the form (5). In this case, ζ(xi)
ε
→ ζ(x′i ) denotes that subprocess ζ(xi) executes no

transition.

{xi
αi
→ x′i }i∈I{xi

ε
→ x′i }i∈{1,...,n}−I

C(x1, ..., xn)
α
→ D(y1, ..., yn)

(5)

The ε transition will not be added to the TSS. In fact, a TSS is a pair (Σ,Ψ), where
Σ is a set of function symbols and Ψ is a set of transition rules assigned to the function
symbols. Therefore, even no ruloids are in the TSS.

The introduction of ε transition is to substitute the ruloids of form (4) with the
ruloids of form (5), since these two forms are equivalent when any closed Σ substitution
ζ is applied. In fact, we want to express a viewpoint that, for any ruloid r, it should
have two different but equivalent forms, i.e., form (4) and form (5).

For the equivalence between form (4) and form (5), we want to take an example to
show it. Let x j

ε
−→ x′j be any ε-premise in some ruloid r. In fact, it denotes that, when

ruloid r is applied in some Σ substitution ζ, subprocess ζ(x j) is not fired at all. Also, if
the form (4) of r is applied, the same results are retrieved.

The introduction of ε transitions and thus form (5) will make Lemma 5.3.1 and its
proof prone to be comprehended. In Lemma 5.3.1, we will see that, in the weak ω-
readiness languages, when process C(p1, ..., pn) evolves into C′(p1, ..., p′n) by applying
a ruloid and produce a transition (observable action or τ transition), each subprocess
pi will also evolve into p′i and produce a transition (observable action, τ transition or ε
transition).

Based on the ruloids and the ruloid theorem, we may restate several classes of rules,
which have been defined previously, with the notion of ruloids. And, they will be more
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intuitive and prone to be used in the following.
The first class of rules which we concern is the patience rules. As their counterparts,

the definition of patience ruloids is as follows.

Definition 5.2.4 A ruloid of the form
xi

τ
−→ x′i

C(x1, ..., xi, ..., xn)
τ
−→ C(x1, ..., x′i , ..., xn)

with

1 ≤ i ≤ n is called a patience ruloid of the ith argument of the context C.
In the following, a ruloid is called a plain ruloid if it is not a patience ruloid. Similar

to the division in the patience rules, we also need to divide the patience ruloids into
three classes, i.e., patience ruloids for active arguments, patience ruloids for receiving
arguments and patience ruloids for other arguments.

In fact, Strategy 5.2.2 has already provided a canonical way to retrieve this division.
Let L be a de Simone language and C be any context of n holes in it.

1) If only adding the patience rules for active arguments into the language, then,
after using Strategy 5.2.2, the patience ruloids in R(C, τ) are patience ruloids for active
arguments.

2) If further adding the patience rules for receiving arguments into the language,
then, after using Strategy 5.2.2, the patience ruloids in R(C, τ) are patience ruloids for
active arguments and receiving arguments. Therefore, getting rid of the patience ruloids
for active arguments, we can obtain the patience ruloids for receiving arguments.

This division is obtained indirectly from Strategy 5.2.2 and patience rules, and thus
it is hard to be used in the following. Here, we will propose another division which is
directly based on the arguments of a context.

Definition 5.2.5 Let L = (Σ,Ψ) be a weak ω-readiness language, and C be any
context of n holes. The ith argument of the context C is active if there exists a plain
ruloid r of form (4) in R(C, τ) such that xi appears as left-hand side of a premise. The
ith argument of the context C is receiving if it is not active and there exist another
context D and a plain ruloid r of form (4) in R(D) such that C(x′1, ..., x

′
n) appears as the

target of r and x′i appears as right-hand side of a premise.
Below, we will prove that these two divisions are indeed equivalent, i.e., a patience

ruloid of some context C is a patience ruloid for active (resp. receiving, other) argument
obtained from Strategy 5.2.2 and patience rules iff it is a patience ruloid for active (resp.
receiving, other) argument defined by Definition 5.2.5.

Proposition 5.2.6 The division defined by Definition 5.2.5 is equivalent to the di-
vision obtained from Strategy 5.2.2 and patience rules.

Proof (⇐=) Let L = (Σ,Ψ) be a de Simone language, and C be any context of n
holes.

If only adding the patience rules for active arguments into the language, we need
to prove that each active argument of the context C defined by Definition 5.2.5 has a
patience ruloid. We will prove by making an induction on the context C and Strategy
5.2.2.

1) If C ∈ V or C ∈ Σ, then it can be easily obtained from Strategy 5.2.2 and
Definition 2.8.

2) If C is any context, then it can be rewritten as f (C1(X1), ...,Cm(Xm)). Assume
that contexts C1, ...,Cm satisfy that each active argument has a patience ruloid.

3) We need to prove that each active argument of C defined by Definition 5.2.5 has

16



a patience ruloid. Suppose that the ith argument of C is an active argument. Then, by
Definition 5.2.5, there exists a plain ruloid r of form (4) in R(C, τ) such that xi appears
as left-hand side of a premise. By Strategy 5.2.2, xi must appear as left-hand side of a
premise of some context. Without loss of generality, assume that xi is the kth argument
of the C j. By the induction hypothesis, the kth argument of C j is active and thus has
a patience ruloid. Also by Strategy 5.2.2, the jth argument of functor f is active and
thus has a patience ruloid. Therefore, we have that the ith argument of C has a patience
ruloid by Strategy 5.2.2 and the above two patience ruloids for C j and f , respectively.

If further adding the patience rules for receiving arguments into the language, we
need to prove that each receiving argument of the context C defined by Definition 5.2.5
has a patience ruloid. Assume that the ith argument of context C is receiving. Then, by
Definition 5.2.5, there exist another context D and a plain ruloid r of form (4) in R(D)
such that C(x′1, ..., x

′
n) appears as the target of r and x′i appears as right-hand side of a

premise. We will prove by making an induction on context C and Strategy 5.2.2.
1) If C ∈ V or C ∈ Σ, then, by Definition 2.8, the ith argument of C is receiving.

Therefore, it should have a patience rule by the hypothesis. By Strategy 5.2.2, each
patience rule is also a patience ruloid.

2) If C is any context, then it can be rewritten as f (C1(X1), ...,Cm(Xm)). Assume
that contexts C1, ...,Cm satisfy that each receiving argument has a patience ruloid.

3) We need to prove that the ith argument of C defined by Definition 5.2.5 has a
patience ruloid. By Strategy 5.2.2, xi must appear as right-hand side of a premise of
some context. Without loss of generality, assume that xi is the kth argument of the C j.
By the induction hypothesis, the kth argument of C j is receiving or active and thus has
a patience ruloid. Also by Strategy 5.2.2, the jth argument of functor f is receiving or
active and thus has a patience ruloid. Therefore, we have that the ith argument of C
has a patience ruloid by Strategy 5.2.2 and the above two patience ruloids for C j and
f , respectively.

(=⇒) It is trivially true since, according to Strategy 5.2.2, each rule is also a ruloid.
That is to say, we may first obtain the division on patience rules from the division on
patience ruloids in Definition 5.2.5, and then using Strategy 5.2.2 to obtain the division
from Strategy 5.2.2 and patience rules. �

The second class of rules is the rules with τ conclusion. Likewise, we may define
the ruloids with τ conclusion as their counterparts.

Definition 5.2.7 A ruloid of the form H
C(x1, ..., xn)

τ
−→ D(y1, ..., yn)

is called a ruloid

with τ-conclusion, if it is not a patience ruloid and there exists at least one positive Σ

literal in H.
Also, we want to show that the exclusion of rules with τ-conclusion is equivalent

to the exclusion of ruloids with τ-conclusion.
Proposition 5.2.8 Let L be a weak ω-readiness language, and C(x1, ..., xn) be any

context of n holes. If, apart from patience rules, no rule with τ-conclusion is allowed,
then no ruloid with τ-conclusion can be in R(C, τ), and vice versa.

Proof This can be easily obtained from a fact that, by Strategy 5.2.2, the output of
any ruloid is in fact the output of some rule. �
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Table 1: The Usage of Lemmas in Section 5.3 in Proving the Congruence Theorems

format\ Lemma 5.3.15.3.25.3.35.3.45.3.5
1-readiness format

√ √ √ √

finite readiness format
√ √ √ √

ω-readiness format
√ √ √

5.3 Several Lemmas
In this subsection, several necessary lemmas are to be presented and the usage of them
to prove the congruence theorems in the following three subsections has been listed in
Table 1. The symbol

√
in the table denotes that some lemma is to be used in the proof

of the congruence theorem for the corresponding format. For example, the congruence
theorem for the weak ω-readiness format needs the first three lemmas, i.e., Lemma
5.3.1, Lemma 5.3.2 and Lemma 5.3.3.

The following lemma states that, in the weak ω-readiness languages, any weak
trace of a composite process may be decomposed into weak traces of its subprocesses.
Besides, this lemma also holds in weak finite readiness languages and weak 1-readiness
languages.

Lemma 5.3.1 Let L = (Σ,Ψ) be a weak ω-readiness language, and C(x1, ..., xn)
be any context of n holes. Suppose that ζ is any closed Σ substitution mapping xi into
pi. If σ is a trace in T (C(p1, ..., pn), ω), then, for all 1 ≤ i ≤ n, there is a trace σi in
T (pi, ω) such that, when C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p′n), we have pi

σi
=⇒ p′i .

Proof Since C(p1, ..., pn)
σ

=⇒ C′(p′1, ..., p′n), we have C(p1, ..., pn) = C0(p10, ..., pn0)
α1
−→

C1(p11, ..., pn1)
α2
−→ ...

αm
−→ Cm(p1m, ..., pnm) = C′(p′1, ..., p′n), where ∀1 ≤ j ≤ m : α j ∈

Act ∪ {τ} and σ′ = α1...αm is equivalent to σ if all its τ transitions are omitted.
We will prove this lemma by making an induction on the length of σ′.
1) |σ′| = 1. Let σ′ = α. By the completeness property of the ruloids, there

should be a ruloid of form (4) in R(C, α), and pi
αi
−→ for all i ∈ I. As is shown

before that, we have a ruloid of form (5) corresponding with form (4). Therefore,
there exist pi

αi
−→ p′i for all i ∈ I and pi

ε
−→ p′i for all i ∈ {1, ..., n} − I, i.e., when

C(p1, ..., pn)
σ

=⇒ C′(p′1, ..., p′n), we have pi
αi

=⇒ p′i for all i ∈ I and pi
τ∗

−→ p′i for all
i ∈ {1, ..., n} − I.

2) Assume that, when |σ′| = m − 1 with m ≥ 1, if σ is a trace in T (C(p1, ..., pn), ω)
then, for all 1 ≤ i ≤ n, there should be a trace σi in T (pi, ω) such that, when
C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p′n), we have pi

σi
=⇒ p′i .

3) For |σ′| = m, suppose that C(p1, ..., pn) = C0(p10, ..., pn0)
α1
−→ C1(p11, ..., pn1)

α2
−→

...
αm
−→ Cm(p1m, ..., pnm) = C′(p′1, ..., p′n). By the induction hypothesis, when C(p1, ..., pn) =

C0(p10, ..., pn0)
α1
−→ C1(p11, ..., pn1)

α2
−→ ...

αm−1
−→ Cm−1(p1(m−1), ..., pn(m−1)) = C′′(p′′1 , ..., p′′n ),

we have pi
σ′′i

=⇒ p′′i . Now, when Cm−1(p1(m−1), ..., pn(m−1)) = C′′(p′′1 , ..., p′′n )
αm
−→ Cm(p1m, ..., pnm) =
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C′(p′1, ..., p′n), we have p′′i
α′m

=⇒ p′i . Therefore, when C(p1, ..., pn)
σ

=⇒ C′(p′1, ..., p′n), we

have pi
σ′′i α

′
m

=⇒ p′i . �
The following lemma states that, in the weak ω-readiness languages, the weak trace

equivalence will be preserved and the composite processes can reach the same contexts
after same weak traces. The definition of weak trace equivalence is that: two processes
p and q are weak trace equivalent, denoted as p ∼t q, iff they have the same set of
weak traces, i.e., p ∼t q iff T (p, ω) = T (q, ω). This lemma also holds in weak finite
readiness languages and weak 1-readiness languages.

Before that, we need one more definition on delay processes. Suppose that σ ∈
T (p, ω) for some process p, then delay processes of p

σ
=⇒ are those satisfying that 1)

if |σ| = 0, then p itself is the delay process, and 2) if |σ| ≥ 1, then let σ = σ′a and
delay processes are those processes p′ such that p

σ
=⇒

a
−→ p′.

Lemma 5.3.2 Let L = (Σ,Ψ) be a weak ω-readiness language, and C(x1, ..., xn)
be any context of n holes. Suppose that ζ and ξ are any two closed Σ substitutions
mapping xi into pi and qi, respectively. If for all 1 ≤ i ≤ n, pi ∼t qi, then

1) for any traceσ ∈ T (C(p1, ..., pn), ω) and some context C′ such that C(p1, ..., pn)
σ

=⇒

C′(p′1, ..., p′n), there exist q′1, ..., q
′
n such that C(q1, ..., qn)

σ
=⇒ C′(q′1, ..., q

′
n), and

2) if there exists a patience ruloid for the ith argument of context C′ then q′i can

be any process such that qi
σi

=⇒ q′i , and if there does not exist a patience ruloid for the

ith argument of context C′ then q′i can be any delay processes of qi
σi

=⇒, where σi is
obtained by decomposing σ into the weak traces of subprocess pi.

Proof Suppose that σ is a trace of C(p1, ..., pn), and C(p1, ..., pn)
σ

=⇒ C′(p′1, ..., p′n).

By Lemma 5.3.1, when C(p1, ..., pn)
σ

=⇒ C′(p′1, ..., p′n), we have pi
σi

=⇒ p′i for all

1 ≤ i ≤ n. Then, by pi ∼t qi, we have qi
σi

=⇒ for all 1 ≤ i ≤ n.
For C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p′n), we have C(p1, ..., pn) = C0(p10, ..., pn0)

α1
−→

C1(p11, ..., pn1)
α2
−→ ...

αm
−→ Cm(p1m, ..., pnm) = C′(p′1, ..., p′n), where ∀1 ≤ j ≤ m : α j ∈

Act ∪ {τ} and σ′ = α1...αm is equivalent to σ if all its τ transitions are omitted.
Suppose that the sequence of plain ruloids applied in the above procedure is r1r2...rk.

It is enough to show that C(q1, ..., qn) can also apply ruloids r1r2...rk in the same order,
and C(q1, ..., qn)

σ
=⇒ C′(q′1, ..., q

′
n) for some q′1, ..., q

′
n. Furthermore, if there exists a

patience ruloid for the ith argument of context C′ then q′i can be any process such that

qi
σi

=⇒ q′i , and if there does not exist a patience ruloid for the ith argument of context

C′ then q′i can be any delay processes of qi
σi

=⇒.
We will prove it by making an induction on k.
1) k = 0. Then, C = C′ and only patience ruloids are applied when C(p1, ..., pn)

σ
=⇒

C′(p′1, ..., p′n) and thus σ = τ∗. By Lemma 5.3.1, σi = τ∗ for all 1 ≤ i ≤ n. Therefore,

there must exist q′i , ..., q
′
n such that C(q1, ..., qn)

τ∗

=⇒ C′(q′1, ..., q
′
n) since an extreme

possibility is that qi ≡ q′i for all 1 ≤ i ≤ n. Now, if there exists a patience ruloid for

the ith argument of context C′ then q′i can be any process such that qi
τ∗

−→ q′i by the
soundness property of ruloids and the definition of patience ruloids. On the other hand,

19



if there does not exist a patience ruloid for the ith argument of context C′ then q′i can
be qi.

2) Assume that, when k = m − 1 with m ≥ 1, the above statement holds.

3) For k = m, suppose that, C(p1, ..., pn)
σ

=⇒ C′′(p′′1 , ..., p′′n ) and C′′(p′′1 , ..., p′′n )
δ

=⇒

C′(p′1, ..., p′n), where the first k−1 plain ruloids of r1r2...rk are applied when C(p1, ..., pn)
σ

=⇒

C′′(p′′1 , ..., p′′n ) and the kth plain ruloid are applied when C′′(p′′1 , ..., p′′n )
δ

=⇒ C′(p′1, ..., p′n).

By Lemma 5.3.1, there exist σi, δi for all 1 ≤ i ≤ n such that pi
σi

=⇒ p′′i and

p′′i
δi

=⇒ p′i . By pi ∼t qi, we have qi
σiδi
=⇒.

Then, by the induction hypothesis, C(q1, ..., qn) can also apply the first k−1 ruloids
and reaches C′′(q′′1 , ..., q

′′
n ). Moreover, if there exists a patience ruloid for the ith argu-

ment of context C′′ then q′′i can be any process such that qi
σi

=⇒ q′′i , and if there does
not exist a patience ruloid for the ith argument of context C′′ then q′′i can be any delay

process of qi
σi

=⇒.
Furthermore, for all 1 ≤ i ≤ n, let q′′i be any delay process of qi

σi
=⇒ such that

qi
σi

=⇒ q′′i
δi

=⇒. There always exists a such q′′i because of qi
σiδi
=⇒.

Suppose that the kth ruloid rk is in form (4). Then, by the definition of the weak ω-
readiness format, all arguments in I have corresponding patience ruloids since they are
all active arguments of C′′ by Definition 5.2.5. Therefore, by the soundness property
of the ruloids, we may apply the patience ruloids for the arguments in I and obtain

C′′(q′′1 , ..., q
′′
n )

τ∗

=⇒ C′′(q′′′1 , ..., q
′′′
n ), such that q′′′i ≡ q′′i if i < I and q′′′i

δi
−→ if i ∈

I. Then, also by the soundness property of the ruloids, ruloid rk will be applied and

C′′(q′′′1 , ..., q
′′′
n )

δ
−→ C′(q′′′′1 , ..., q′′′′n ), where q′′′′i ≡ q′′i if i < I and q′′′′i is any process

satisfying q′′′i
δi
−→ q′′′′i if i ∈ I.

Now, we can see that q′′′′i is indeed a delay process of qi
σiδi
=⇒.

Finally, if there exists a patience ruloid for the ith argument of context C′ then q′′′′i

may evolve into any process q′i such that q′′′′i
τ∗

=⇒ q′i and thus q′i may be any process

such that qi
σiδi
=⇒ q′i . On the other hand, if there does not exist a patience ruloid for the

ith argument of context C′ then let q′i be q′′′′i , and thus q′i is any delay process of qi
σiδi
=⇒.

�
As a strengthened results of the above lemma, Lemma 5.3.3 below will show that,

in weak finite readiness languages and weak ω-readiness languages, if the ith argument
is neither an active argument nor a receiving argument, i.e., is an other argument, then
q′i can be qi or any process such that qi

σi
=⇒ q′i . Though we only prove this lemma in

weak ω-readiness languages, it also holds in weak finite readiness languages.
Lemma 5.3.3 Let L = (Σ,Ψ) be a weak ω-readiness language, and C(x1, ..., xn) be

any context of n holes. Suppose that ζ and ξ are any two closed Σ substitution mapping
xi into pi and qi, respectively. For all 1 ≤ i ≤ n, pi ∼t qi, and thus for any trace
σ ∈ T (C(p1, ..., pn), ω) and some context C′ with C(p1, ..., pn)

σ
=⇒ C′(p′1, ..., p′n), there

exist q′1, ..., q
′
n such that C(q1, ..., qn)

σ
=⇒ C′(q′1, ..., q

′
n). Now, if the ith argument of C′
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is an other argument, then q′i can be qi or any process such that qi
σi

=⇒ q′i .
Note: Here, the word ’other’ may incur misunderstandings. In fact, it denotes that

the division of the ith argument is neither an active argument nor a receiving argument.
Proof Like the proof of Lemma 5.3.2, suppose that the sequence of plain ruloids

applied in the procedure C(p1, ..., pn)
σ

=⇒ C′(p′1, ..., p′n) is r1r2...rk.
We will prove it by making an induction on k.
1) k = 0. Then, C = C′ and only patience ruloids are applied when C(p1, ..., pn)

σ
=⇒

C′(p′1, ..., p′n) and thus σ = τ∗. In this case, we can let q′i be qi if the ith argument of C′

is an other argument.
2) Assume that, when k = m − 1 with m ≥ 1, the lemma holds.

3) For k = m, suppose that, C(p1, ..., pn)
σ

=⇒ C′′(p′′1 , ..., p′′n ) and C′′(p′′1 , ..., p′′n )
δ

=⇒

C′(p′1, ..., p′n), where the first k−1 plain ruloids of r1r2...rk is applied when C(p1, ..., pn)
σ

=⇒

C′′(p′′1 , ..., p′′n ) and the kth plain ruloid are applied when C′′(p′′1 , ..., p′′n )
δ

=⇒ C′(p′1, ..., p′n).
However, observe that the ith argument of C′′ cannot be in set I of ruloid rk. Or

else, the ith argument of C′ will be at least a receiving argument by Definition 5.2.5.
We separate it into two cases:

i) If the ith argument of C′′ is an active argument or a receiving argument, then it
has a patience ruloid since the language L is a weak ω-readiness language. Therefore,

by Lemma 5.3.2, q′i can be any process such that qi
σiδi
=⇒ q′i with δi = τ∗.

ii) If the ith argument of C′′ is an other argument, then, by the induction hypothesis,
q′′i can be qi or any process such that qi

σi
=⇒ q′′i . Now, since L is a weak ω-readiness

language, no patience ruloid for the ith argument of C′′ and the ith argument of C′.
Therefore, q′i is just q′′i , and thus q′i can be qi or any process such that qi

σi
=⇒ q′′i . Then,

by δi = τ∗, q′i can be qi or any process such that qi
σiδi
=⇒ q′i . �

Note that, the above lemma does not hold in weak 1-readiness languages since
patience ruloids for receiving arguments are needed when proving it. Therefore, it will
not be used when proving the congruence theorem for the wean 1-readiness format.

The following lemma shows that, in a weak finite readiness language, if a process
executes an action sequence (weak trace) with length k, then, at the same time, all the
lengths of the action sequences executed by its subprocesses may not exceed k. This
lemma also holds in weak 1-readiness languages.

Lemma 5.3.4 LetL be a weak finite readiness language. C(x1, ..., xn) is any context
of n holes in L. Suppose that ζ is any closed Σ substitution mapping xi into pi. If
C(p1, ..., pn) is a process and σ is a weak trace of C(p1, ..., pn), then each pi will execute
a weak trace σi at the same time, for 1 ≤ i ≤ n. We can conclude that ∀1 ≤ i ≤ n :
|σi| ≤ k when |σ| = k.

Proof By Lemma 5.3.1, if C(p1, ..., pn) is a process and σ is a weak trace of
C(p1, ..., pn), then each pi will execute a weak trace σi at the same time. We also
need to prove that |σi| ≤ k when |σ| = k.

We will prove it by making an induction on |σ| = k.

1) k = 0. Then, C(p1, ..., pn)
τ∗

=⇒ C′(p′1, ..., p′n). By the definition of the weak ω-
readiness format, the ruloids applied in this procedure can only be patience ruloids or
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ruloids with τ conclusion. By the hypothesis, no rules with τ conclusion are present in
L, and thus, by Proposition 5.2.8, no ruloids with τ conclusion are present in R(C, τ).

Therefore, when C(p1, ..., pn)
τ∗

=⇒ C′(p′1, ..., p′n), only patience ruloids are applied.
However, from the definition of patience ruloids and its corresponding ruloids in form
(5), pi

τ
−→ p′i or pi

ε
−→ p′i for all 1 ≤ i ≤ n. And |τ∗| = |ε| = 0.

2) Assume that, when k = m − 1 with m ≥ 1, we have |σi| ≤ k when |σ| = k.

3) For k = m, let σ = σ′α. Then, we have C(p1, ..., pn)
σ′

=⇒ C′′(p′′1 , ..., p′′n )
α

=⇒

C′(p′1, ..., p′n). Extending it, we obtain that C(p1, ..., pn)
σ′

=⇒ C′′(p′′1 , ..., p′′n )
τ∗

−→ C1(p1
1, ..., p1

n)
α
−→

C2(p2
1, ..., p2

n)
τ∗

−→ C′(p′1, ..., p′n).

By Lemma 5.3.1, for all 1 ≤ i ≤ n, there exist pi
σ′i

=⇒ p′′i
σ1

i
=⇒ p1

i

αi
=⇒ p2

i

σ2
i

=⇒ p′i .
It is trivial that |σ′| = m − 1. Therefore, by the induction hypothesis, we have

|σ′i | ≤ m − 1. Also, when C′′(p′′1 , ..., p′′n )
τ∗

−→ C1(p1
1, ..., p1

n) and C2(p2
1, ..., p2

n)
τ∗

−→

C′(p′1, ..., p′n), |τ∗| = 0. Therefore, by the induction base, we have |σ1
i | = |σ2

i | = 0.
Furthermore, |αi| ≤ 1 can be obtained by the ruloids of form (5).

In all, |σi| ≤ k when |σ| = k. �
The following lemma shows that, in weak 1-readiness languages, processes C(p1, ..., pi, ..., pn)

and C(p1, ..., p′i , ..., pn) have the same sets of next observable actions if pi
τ∗

−→ p′i and
the ith argument is not an active argument.

Lemma 5.3.5 Let L = (Σ,Ψ) be a weak 1-readiness language, and C(x1, ..., xn) be
any context of n holes. Suppose that ζ is any closed Σ substitution mapping xi into

pi. If the ith argument is not an active argument of C(x1, ..., xn) and pi
τ∗

−→ p′i , then
T (C(p1, ..., pi, ..., pn), 1) = T (C(p1, ..., p′i , ..., pn), 1).

Proof Without loss of generality, suppose that p = C(p1, ...pi, ..., pn) and q =

C(p1, ..., p′i , ..., pn), where C is any context of n holes in the language L. Let A1 =

{a ∈ Act|p
a

=⇒} and A2 = {a ∈ Act|p
a

=⇒}. We need to prove A1 = A2. Consider the
next ruloid which will be applied.

1) If the next ruloid is a patience ruloid, then it should be a patience ruloid for ac-
tive argument, sinceL is a weak 1-readiness language. However, applying the patience
ruloid will not produce observable actions for C(p1, ...pi, ..., pn) and C(p1, ..., p′i , ..., pn).
Because the ith argument is not an active argument, C(p1, ...pi, ..., p j, ..., pn)

τ
−→ C(p1, ...pi, ..., p′j, ..., pn)

and C(p1, ...p′i , ..., p j, ..., pn)
τ
−→ C(p1, ...p′i , ..., p′j, ..., pn) when the jth argument of

context C is an active argument and p j
τ
−→ p′j. Now, it is enough to consider the

set of next observable actions of C(p1, ...pi, ..., p′j, ..., pn) and C(p1, ...p′i , ..., p′j, ..., pn).
2) If the next ruloid is a plain ruloid, then it should not be a ruloid with τ conclusion,

since L is a weak 1-readiness language. Suppose that the applied ruloid r is in form
(4), then the ith argument is not in I since it is not an active argument. Therefore, by
the soundness property of the ruloids, the pi will not be fired when applying the ruloid
r. Furthermore, since p and q are only different in pi and p′i , we have A1 = A2. �
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5.4 Weak 1-Readiness Format for Weak 1-Readiness Equivalence
Now, we will prove the congruence theorem for the weak 1-readiness format.

Theorem 5.4.1 The weak 1-readiness format is a congruence format for the weak
1-readiness equivalence.

Proof It is enough to prove that if ∀1 ≤ j ≤ n : p j ∼
1
r q j then C(p1, ..., pn) ∼1

r
C(q1, ..., qn), where C is any context of n holes in a weak 1-readiness language L.
By the symmetry, we only need to prove that if ∀1 ≤ j ≤ n : p j ∼

1
r q j, then

R(C(p1, ..., pn), 1) ⊆ R(C(q1, ..., qn), 1).
Suppose that (σ, A) is any weak 1-readiness pair in R(C(p1, ..., pn), 1), we need

to show that (σ, A) ∈ R(C(q1, ..., qn), 1). By (σ, A) ∈ R(C(p1, ..., pn), 1) and the def-
inition of weak 1-readiness pair, there exists C′(p′1, ..., p′n) such that C(p1, ..., pn)

σ
=⇒

C′(p′1, ..., p′n) ∧ T (C′(p′1, ..., p′n), 1) = A.

By Lemma 5.3.1, when C(p1, ..., pn)
σ

=⇒ C′(p′1, ..., p′n), there exists p j
σ j

=⇒ p′j for

any subprocess p j with 1 ≤ j ≤ n. Similarly, for all a ∈ A, when C′(p′1, ..., p′n)
a

=⇒, we

have p′j
δ j

=⇒ for all subprocess p j with 1 ≤ j ≤ n. Let A′j be the set of all δ j. Note that,
for some a ∈ A, there may exist several δ j corresponding with it. And we should add
all of them into the set A′j.

Then, by Lemma 5.3.4, the exclusion of the rules with τ-conclusion will make the
length of δ j not exceed 1, i.e., ∀δ j ∈ A′j : |δ j| ≤ 1. Therefore, for all 1 ≤ j ≤ n, we have
(σ j, A j) ∈ R(p j, 1) such that A′j ⊆ A j and A j = T (p′j, 1).

Now, by p j ∼
1
r q j, we have (σ j, A j) ∈ R(q j, 1). Without loss of generality, suppose

that q j
σ j

=⇒ q′j and T (q′j, 1) = A j.

By Lemma 5.3.2,σ is also a trace of C(q1, ..., qn) and C(q1, ..., qn)
σ

=⇒ C′(q′′1 , ..., q
′′
n ).

Observe that, it is possible that q′′j is not equivalent to q′j. The reason is that, from

Lemma 5.3.2, we can only obtain that, there exist q′′1 , ..., q
′′
n such that C(q1, ..., qn)

σ
=⇒

C′(q′′1 , ..., q
′′
n ), but not the very q′1, ..., q

′
n which are obtained from (σ j, A j) ∈ R(q j, 1).

By Lemma 5.3.2, if the jth argument of C′ is an active argument, then q′′j can be any

process such that q j
σ j

=⇒ q′′j and thus we may let q′′j be q′j safely because of q j
σ j

=⇒ q′j.
On the other hand, if the jth argument of C′ is not an active argument, then no patience

ruloids are present in the language. Therefore, q′′j can be any delay process of qi
σ j

=⇒.

Note that, for q′j, there must exist some delay process q′′j such that q j
σ j

=⇒ q′′j
τ∗

−→ q′j.

Now, by Lemma 5.3.5 and q′′j
τ∗

−→ q′j, we assert thatT (C′(q′′1 , ..., q
′′
n ), 1) = T (C′(q′1, ..., q

′
n), 1).

Note that, there may exist several arguments of C′ such that they are not active argu-
ments. However, we can finally obtain T (C′(q′′1 , ..., q

′′
n ), 1) = T (C′(q′1, ..., q

′
n), 1) by

applying Lemma 5.3.5 for several times.
Moreover, byT (q′j, 1) = T (p′j, 1) = A j, we haveT (C′(q′1, ..., q

′
n), 1) = T (C′(p′1, ..., p′n), 1).

Finally, we obtain that T (C′(q′′1 , ..., q
′′
n ), 1) = T (C′(p′1, ..., p′n), 1) = A, and thus

(σ, A) ∈ R(C(q1, ..., qn), 1). �
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5.5 Weak Finite Readiness Format for Weak i-Readiness Equiva-
lence

The following is the congruence theorem for the weak finite readiness format.
Theorem 5.5.1 The weak finite readiness format is a congruence format for the

weak i-readiness equivalence with 1 < i < ω.
Proof It is enough to prove that if ∀1 ≤ j ≤ n : p j ∼

i
r q j then C(p1, ..., pn) ∼i

r
C(q1, ..., qn), where C is any context of n holes in a weak finite readiness language
L. By the symmetry, we only need to prove that if ∀1 ≤ j ≤ n : p j ∼

i
r q j, then

R(C(p1, ..., pn), i) ⊆ R(C(q1, ..., qn), i).
Suppose that (σ,Φ) is any weak i-readiness pair in R(C(p1, ..., pn), i), we need to

show that (σ,Φ) ∈ R(C(q1, ..., qn), i). By (σ,Φ) ∈ R(C(p1, ..., pn), i) and the defi-
nition of weak i-readiness pair, there exists C′(p′1, ..., p′n) such that C(p1, ..., pn)

σ
=⇒

C′(p′1, ..., p′n) ∧ T (C′(p′1, ..., p′n), i) = Φ.

By Lemma 5.3.1, when C(p1, ..., pn)
σ

=⇒ C′(p′1, ..., p′n), there exists p j
σ j

=⇒ p′j for

all subprocess p j with 1 ≤ j ≤ n. Similarly, for all δ ∈ Φ, when C′(p′1, ..., p′n)
δ

=⇒, we

have p′j
δ j

=⇒ for all subprocess p j with 1 ≤ j ≤ n. Let Φ′j be the set of all δ j. Note that,
for some δ ∈ Φ, there may exist several δ j corresponding with it. And we should add
all of them into the set Φ′j.

By Lemma 5.3.4, the exclusion of the rules with τ-conclusion will make the length
of δ j not exceed i, i.e., ∀δ j ∈ Φ′j : |δ j| ≤ i. Therefore, for all 1 ≤ j ≤ n, we have
(σ j,Φ j) ∈ R(p j, i) such that Φ′j ⊆ Φ j and Φ j = T (p′j, i).

Now, by p j ∼
i
r q j, we have (σ j,Φ j) ∈ R(q j, i). Without loss of generality, suppose

that q j
σ j

=⇒ q′j and T (q′j, i) = Φ j.

By Lemma 5.3.2,σ is also a trace of C(q1, ..., qn) and C(q1, ..., qn)
σ

=⇒ C′(q′′1 , ..., q
′′
n ).

Moreover,
1) if the jth argument of C′ is a receiving argument or an active argument, then it

has a patience ruloid since the language is a weak finite readiness language. Therefore,
by Lemma 5.3.2, we can let q′′j be q′j since q′′j can be any process such that q j

σi
=⇒ q′′j ,

and
2) if the jth argument of C′ is an other argument, then, by Lemma 5.3.3, we can let

q′′j be q j or any process such that q j
σ j

=⇒ q′′j . We want to separate it into two cases:

i) if q′′j is any process such that q j
σ j

=⇒ q′′j , then we can also let q′′j be q′j.
ii) if q′′j is q j, then q′j and q′′j are both delay processes since the jth argument of C′

is an other argument and thus no patience ruloid for it. Therefore, we can obtain that
q′′j ≡ q′j ≡ q j.

In all, we can always let q′′j be q′j, i.e., C(q1, ..., qn)
σ

=⇒ C′(q′1, ..., q
′
n).

Moreover, byT (q′j, i) = T (p′j, i) = Φ j, we haveT (C′(q′1, ..., q
′
n), i) = T (C′(p′1, ..., p′n), i),

and thus (σ,Φ) ∈ R(C(q1, ..., qn), i). �
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5.6 Weak ω-Readiness Format for Weak ω-Readiness Equivalence
The congruence theorem for the weak ω-readiness format is as follows.

Theorem 5.6.1 The weak ω-readiness format is a congruence format for the weak
ω-readiness equivalence.

Proof It is enough to prove that if ∀1 ≤ j ≤ n : p j ∼
ω
r q j then C(p1, ..., pn) ∼ωr

C(q1, ..., qn), where C is any context of n holes in a weak finite readiness language
L. By the symmetry, we only need to prove that if ∀1 ≤ j ≤ n : p j ∼

ω
r q j, then

R(C(p1, ..., pn), ω) ⊆ R(C(q1, ..., qn), ω).
Suppose that (σ,Φ) is any weak ω-readiness pair in R(C(p1, ..., pn), ω), we need

to show that (σ,Φ) ∈ R(C(q1, ..., qn), ω). By (σ,Φ) ∈ R(C(p1, ..., pn), ω) and the def-
inition of weak ω-readiness pair, there exists C′(p′1, ..., p′n) such that C(p1, ..., pn)

σ
=⇒

C′(p′1, ..., p′n) ∧ T (C′(p′1, ..., p′n), ω) = Φ.

By Lemma 5.3.1, when C(p1, ..., pn)
σ

=⇒ C′(p′1, ..., p′n), there exists p j
σ j

=⇒ p′j for

all subprocess p j with 1 ≤ j ≤ n. Similarly, for all δ ∈ Φ, when C′(p′1, ..., p′n)
δ

=⇒, we

have p′j
δ j

=⇒ for all subprocess p j with 1 ≤ j ≤ n. Let Φ′j be the set of all δ j. Note that,
for some δ ∈ Φ, there may exist several δ j corresponding with it. And we should add
all of them into the set Φ′j.

Therefore, for all 1 ≤ j ≤ n, we have (σ j,Φ j) ∈ R(p j, ω) such that Φ′j ⊆ Φ j and
Φ j = T (p′j, ω).

Now, by p j ∼
ω
r q j, we have (σ j,Φ j) ∈ R(q j, ω). Without loss of generality, suppose

that q j
σ j

=⇒ q′j and T (q′j, ω) = Φ j.

By Lemma 5.3.2,σ is also a trace of C(q1, ..., qn) and C(q1, ..., qn)
σ

=⇒ C′(q′′1 , ..., q
′′
n ).

Moreover,
1) if the jth argument of C′ is a receiving argument or an active argument, then it

has a patience ruloid since the language is a weak ω-readiness language. Therefore, by
Lemma 5.3.2, we can let q′′j be q′j since q′′j can be any process such that q j

σi
=⇒ q′′j , and

2) if the jth argument of C′ is an other argument, then, by Lemma 5.3.3, we can let

q′′j be q j or any process such that q j
σ j

=⇒ q′′j . We want to separate it into two cases:

i) if q′′j is any process such that q j
σ j

=⇒ q′′j , then we can also let q′′j be q′j.
ii) if q′′j is q j, then q′j and q′′j are both delay processes since the jth argument of C′

is an other argument and thus no patience ruloid for it. Therefore, we can obtain that
q′′j ≡ q′j ≡ q j.

In all, we can always let q′′j be q′j, i.e., C(q1, ..., qn)
σ

=⇒ C′(q′1, ..., q
′
n).

Moreover, byT (q′j, ω) = T (p′j, ω) = Φ j, we haveT (C′(q′1, ..., q
′
n), ω) = T (C′(p′1, ..., p′n), ω),

and thus (σ,Φ) ∈ R(C(q1, ..., qn), ω). �

6 Conclusions
In the paper, we first introduce a series of behavioral equivalences, named weak para-
metric readiness equivalences, which take the weak readiness equivalence and the weak
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Table 2: weak parametric readiness equivalences and their corresponding rule formats
equivalence rule format concise characterizations
weak ω-readiness weak ω-readiness de Simone + patience rules for active arguments and receiving arguments
... ... ...
weak i-readiness weak finite readiness rules with τ-conclusion are not allowed
... ... ...
weak 2-readiness weak finite readiness rules with τ-conclusion are not allowed
weak 1-readiness weak 1-readiness patience rules for receiving arguments are not necessary

possible future equivalence as their special cases. Then, based on the idea of Structural
Operational Semantics, the rule formats are proposed to meet these behavioral equiva-
lences. By the formal proofs, we have shown that these rule formats are all congruence
formats of their corresponding behavioral equivalences.

The corresponding relations between the weak parametric readiness equivalences
and their corresponding rule formats have been collected in the Table 2. This table
reflects the gradual changes among the weak parametric readiness equivalences in that,
when the weak parametric readiness equivalences become coarser, their correspond-
ing rule formats turn tighter. Firstly, the weak ω-readiness format for the weak ω-
readiness equivalence is denoted concisely as ’de Simone + patience rules for active ar-
guments and receiving arguments’. Then, the weak finite readiness format for the weak
i-readiness equivalence with 1 < i < ω should exclude the rules with τ-conclusion. At
the same time, the weak i-readiness is strictly coarser than the weak ω-readiness equiv-
alence. Finally, the weak 1-readiness format for the weak 1-readiness equivalence may
further exclude the patience rules for receiving arguments, when the weak 1-readiness
equivalence is strictly coarser than the weak i-readiness equivalence.

In fact, for any behavioral equivalence, one of the most frequently-asked problems
is whether or not it can be preserved under some frequently-used operators, such as
prefixing, choice, parallel composition, etc., in classical process algebraic languages
like CCS [8], CSP [6] and ACP [9]. Generally, there exist two ways to deal with this
problem: The first one is to prove the congruence properties of these operators one
by one. It is a straightforward and intuitive way, but may be somewhat clumsy. The
second one is to pursue a rule format for this specified behavioral equivalence. And the
given behavioral equivalence can be preserved under any operators in this format.

However, we have noticed that equivalences in strong notion, such as strong bisim-
ulation and decorated trace semantics, attracted much more attention equivalences in
weak notion such as weak bisimulation and testing theory did. In fact, almost all the
classical strong equivalences have found their corresponding rule formats, but much
less works have been done on the rule formats of weak equivalences, especially on the
rule formats of the equivalences in testing theoretical notions. And more specifically,
no rule formats have been presented to be congruence formats for the weak readiness
equivalence or the weak possible future equivalence. The difference may exist in the
increasing complexity after introducing τ transitions by weak equivalences. The aim
of our paper is to make a progress along this direction.

Recently, another kind of proof technique on congruence formats based on decom-
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posing of the subclass of modal formulas for some given equivalences has been studied
[23, 24, 25]. Within their works, (bi)simulation-like equivalences and decorated trace
preorders have found their corresponding congruence formats. These formats are sub-
formats of ready simulation format, i.e., ntyft/ntyxt format without lookahead. How-
ever, the problem whether this proof technique can be fit into our works aiming at weak
readiness equivalence and weak possible future equivalence is still open.
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