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Abstract

Should testing preorder was proposed as a liveness-preserving precongruence for a process algebra except for

nondeterministic choice operator [22]. However, this precongruce result cannot be generalized to other languages be-

fore carefully proved. In this paper, we show that τDes format is a precongruence format for should testing preorder.

A precongruence format guarantees the precongruence of given preorder by imposing syntactic restrictions on lan-

guages. The τDes format [24] was suggested to be a precongruence format for testing preorder, which is incomparable

with should testing preorder on discriminative power. Also, we look into its applications on ACP language.

1 Introduction

When using process algebraic languages to specify distributed systems, a suitable semantic equivalence/preorder is

usually necessary for reasoning and analyzing. Various semantic equivalences/preorders have been proposed to be

useful in different situations. An equivalence relation is reflexive, symmetric, and transitive, and a preorder relation is

reflexive and transitive.

A natural and simple classification is that a given equivalence/preorder may be strong or weak. Their differences

mostly exist in the ways of dealing with the internal transitions, which are generally denoted as τ transitions. Strong

equivalences/preorders regard τ transitions the same as the observable actions. Weak equivalences/preorders, on the

other hand, suppose them unobserved by the outer-world. In this sense, when the given distributed systems are further

reactive systems, the weak equivalences/preorders are more suitable than the strong equivalences/preorders. A reactive

systems can be seen as a black box, which computes by reacting to the stimuli, e.g., input and output, from its

environments, and thus no internal transitions can be witnessed from the outside.

Should testing preorder [22, 7], which is a weak preorder, was proposed to be a solution to the long-standing prob-

lem of characterising the coarsest liveness-preserving precongruence with respect to a full (TCSP-inspired) process

algebra except for the nondeterministic choice operator [22]. The main difference between should testing preorder and

the testing preorder [20] exists in the way dealing with the divergences (τ-loops), which drives them incomparable on

ability to differentiate processes. Testing preorder, more specifically must testing preorder, requires that each maximal

1



run of a testing scenario has a success symbol; On the other hand, should testing preorder requires that at any state of

a testing scenario, there exists a potential success symbol in the future. The way should testing preorder dealing with

divergences (indeed kind of fairness) resembles with the observation congruence, and thus should testing preorder is

strictly coarser than observation congruence.

On the other hand, should testing preorder has also been presented to be practical semantic preorder when specify-

ing the communication protocols [30], since they own a kind of fairness which requires that the internal transitions in

a τ-loop may be executed an arbitrary but only finite number of times and the actions after the τ-loop will eventually

be enabled [30]. It is trivial that this kind of fairness is important for the communication protocols: no matter how

many times transmission of a message may fail, this message can eventually delivered as planned successfully [30].

Though should testing preorder is theoretically important and practically useful as stated above, one thing is not

sure that whether it is precongruent in some prescribed process algebraic languages, e.g., CCS [18, 17], CSP [14] or

ACP [2], though several operators have been proved precongruent on it in [22]. A preorder v is further a precongruence

in some language L if and only if, for any context C of n holes in that language, if two set of subprocesses {p1, . . . , pn}

and {q1, . . . , qn} are in preorder relation correspondingly, i.e., pi v qi for all 1 ≤ i ≤ n, then their composite processes

will also be in preorder relation, i.e., C(p1, . . . , pn) v C(q1, . . . , qn).

Generally, two ways are possible in dealing with this problem.

The first one is that we verify the precongruence for the operators in that language one by one. This way is adopted

by most textbooks introducing some process algebraic languages like CCS and ACP. For example, in CCS, the weak

bisimulation is verified to be congruent on parallel composition operator | and prefixing operator a., but not to be

congruent on nondeterministic choice +. However, making such a verification on all operators is clumsy and tedious.

What is worse is that, when the preorder is to be used in other languages, it should be verified from scratch.

The second one is to seek for a precongruence format for the preorders. Precongruence format guarantees the

precongruence of its corresponding preorder by imposing syntactic restrictions on the languages. Therefore, the

preorder is a precongruence in all languages satisfying its corresponding rule format. Up to now, some rule formats

have been presented to meet the equivalences/preorders, for examples, GSOS format [3] and ntyft/nxyft format [12]

have been proved to be congruent on strong bisimulation, de Simone [8] format was proved to be congruent on failure

equivalence, and so on. The readers are referred to Mousavi, Reniers and Groote [19] for the latest review on the rule

formats. The main topic of this paper is to pursue a rule format for the should testing preorder.

Rule format comes from the structural operational semantics (SOS). SOS [21] has been widely used in defining

the meanings of the operators in various process algebraic languages. Transition system specifications (TSSs) [13],

which borrowed from logic programming, form a theoretical basis for SOS. By imposing some syntactic restrictions

on TSSs, one can retrieve so-called rule formats. From a specified rule format, one may deduce some interesting

properties. Among these properties, one of the most important ones is whether a preorder/equivalence is a precongru-

ence/congruence for a TSS in this rule format. In the rest of the paper, a TSS is always called a language. Moreover,
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a rule format guaranteeing the precongruence of some preorder is also called a precongruence format of that preorder.

In this paper, we will show that τDes-format [24] is a precongruence format for should testing preorder. In [24],

τDes-format was proposed as a precongruence format for testing preorder. However, the result of this paper is still

interesting enough from the following several aspects. The first is that, though our result implies that they share a

same precongruence format, should testing preorder and testing preorder are incomparable in discriminative powers

on processes. [[an example?]]

The second is that, our result is based on a broader study on precongruence formats for weak docorated trace

preorders [15, 16]. Weak failure preorder and weak readiness preorder, coarser than should testing preorder, are

assigned with a different format in which rules with τ-conclusion are not permitted. Weak impossible future preorder

and weak possible future preorder, finer than should testing preorder, are assigned with another format in which

patience rules for receiving arguments are necessary. The result in this paper falls inbetween them, but with a different

proof, because no easy generalization on the previous proof methodology can be made for should testing preorder. We

will give a simple review on our main results in Section 7.

τDes format is a subformat of de Simone format [8], whose rules are required to be in the form

{xi
ai
−→ yi}i∈I

f (x1, . . . , xar( f ))
a
−→ t

. (1)

where ai and a are all observable actions, ar is a function mapping the operator symbol into its arity, I ⊆ {1, . . . , ar( f )}

and the variables xi and yi are all distinct and the only variables that occur in the rule. Moreover, the target t ∈ T(Σ)

does not contain variable xi for i ∈ I and has no multiple occurrence of variables.

In fact, taking τDes format as a precongruence format for should testing preorder is based on the following three

investigations. First, after introducing the τ transitions, we need rules to implement their evolvements. Therefore, the

patience rules are added. Patience rules [5] are rules like

xi
τ
−→ x′i

f (x1, . . . , xi, . . . , xn)
τ
−→ f (x1, . . . , x′i , . . . , xn)

(2)

where 1 ≤ i ≤ n. For example, assume process a|τb and transition rules of parallel composition operator as follows.

p
a
−→ p′

p|q
a
−→ p′|q

,
q

a
−→ q′

p|q
a
−→ p|q′

,
x

a
−→ x′, y

b
−→ y′

x|y
τ
−→ x′|y′

(a, b) ∈ f

Then, patience rule q
τ
−→ q′

p|q
τ
−→ p|q′

will be applied before the communication between subprocesses a and b.

Second, not all arguments of a given operator f need patience rules. This arouses a division on the arguments, i.e.,

active arguments, receiving arguments and other arguments. We will show that rule formats for should testing preorder

only needs the patience rules for active arguments. However, it is not a general requirement, since as we stated before,

weak impossible future preorder and weak possible future preorder, need also patience rules for receiving arguments.
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Third, should testing preorder is invariant under hiding operator, or more generally rules with τ-conclusion.

Though this is the same story with testing preorder, it is still not a general case for weak decorated trace preorders,

since weak readiness preorder and weak failure preorder might not be preserved.

The structure of this paper is: in Section 2, we will introduce some necessary knowledge for process algebraic

languages and SOS. Then in Section 3, the formal definition of the should testing preorder is presented. An intuitive

motivation on our opinions will be exhibited with examples in Section 4. Section 5 is devoted to prove the precon-

gruence theorem which serves as the main result of this paper. In Section 6, its application on the ACP language will

be shown. Section 7 will compare the result in the paper with our previous works. And then, in Section 8, we will

conclude the paper.

2 Preliminaries

For clarity, we divide the preliminaries into several subsections. The first three subsections introduce some general

knowledge about process algebraic languages, i.e., syntax, semantic model and semantic equivalences. The fourth

subsection defines, in a given language, what makes a preorder be precongruent. Finally, we will define a division on

the arguments of an operator, i.e., active arguments, receiving arguments and other arguments.

2.1 Syntax

Let Act denote a set of names which will be used to label on events and Act∗ be the set of all action sequences. We

use a, b, . . . to range over actions in Act, and use A, B, . . . to range over sets of actions in Act. τ denotes the internal

actions which can not be observed by the outer world. α, β, . . . range over actions in Act ∪ {τ}, δ, µ, σ, . . . range over

sequences of actions, and Φ,Ψ, . . . range over sets of sequences. Besides, ε = τ∗.

Basically, presenting a set of syntactic constructions is the first step to define a process algebraic language, e.g.,

CCS, CSP and ACP.

Definition 2.1.1 [1] Let V = {x1, x2, . . .} be a set of variables. A signature Σ is a collection of function symbols f < V

equipped with a function ar : Σ→ N. The set T(Σ) of terms over a signature Σ is defined recursively by: 1) V ⊆ T(Σ);

2) if f ∈ Σ and t1, . . . , tar( f ) ∈ T(Σ), then f (t1, . . . , tar( f )) ∈ T(Σ).

A term c() is abbreviated as c. For t ∈ T(Σ), var(t) denotes the set of variables that occur in t. T(Σ) is the set of

closed terms over Σ, i.e., the terms p ∈ T(Σ) with var(p) = ∅. A Σ-substitution ζ is a mapping from V to T(Σ), and a

closed Σ-substitution ζ is a mapping from V to T(Σ).

In the paper, we will use p, q, . . . to range over the closed terms, and call them processes. Here, we give the syntax

of a simple process algebraic language B as follows

p ::=
√
| a · p | p � p | p ⊕ p | p B p
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where the operators � and ⊕ are exactly the internal and external choices of CSP and
√

denotes the successful termi-

nation.

2.2 Structural Operational Semantics and Labeled Transition Systems

After composing a process using syntactic constructions, we need to define its semantics for analyzing and reasoning.

It is well known that several kinds of semantics are possible, e.g., operational semantics, denotational semantics and

axiomatic semantics.

SOS has been widely accepted as a tool to define operational semantics of processes. TSSs are a formalization of

SOS [21]. The readers are referred to [1] for a comprehensive review on SOS.

Definition 2.2.1 A positive Σ-literal is an expression t
α
−→ t′ and a negative Σ-literal is an expression t

α
9, where

t, t′ ∈ T(Σ) and α ∈ Act ∪ {τ}. A transition rule over Σ is an expression of the form H
C , where H a set of Σ-literals

(the premises of the rule) and C a positive Σ-literal (the conclusion). The left- and right-hand side of C are called the

source and the target of the rule, respectively. Moreover, if r = H
t

α
−→ t′

then define ante(r) = H, cons(r) = {t
α
−→ t′},

and the output of r as α.

A TSS, written as (Σ,Ψ), consists of a signature Σ and a set Ψ of transition rules over Σ. A TSS is positive if the

premises of its rules are positive.

Following it, the labeled transition systems (LTSs) are to be defined. LTSs are standard semantic models for

various process algebraic languages, and in fact, each process has an equivalent LTS by the help of the transition rules.

Definition 2.2.2 Let Σ be a signature. A transition relation over Σ is a relation Tr ⊆ T(Σ) × Act ∪ {τ}× T(Σ). Element

(p, α, p′) of a transition relation is written as p
α
−→ p′.

Thus a transition relation over Σ can be regarded as a set of closed positive Σ-literals (transitions).

Definition 2.2.3 A labeled transition system (LTS) is a triple (T,Tr, Act ∪ {τ}), where T is the set of processes, i.e., the

set of closed terms, and Tr is the transition relation defined as above.

As an example, we give the transition rules of the language B in Table 1.

2.3 Semantic Equivalences and Semantic Preorders

After providing processes with LTSs as their semantics, a natural topic is to decide whether two processes with dif-

ferent syntactic expressions are equivalent. Certainly, two processes with isomorphic LTSs should be deemed to be

equivalent since it is virtually never needed to distinguish between isomorphic graphs [27]. However, equivalence

with isomorphic LTSs is generally too finer to be practically useful. Therefore, various semantic equivalences coarser
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Table 1: Transition rule of language B

a
a
−→
√

a · p
a
−→ p

p
a
−→ p′

p � q
a
−→ p′

q
a
−→ q′

p � q
a
−→ q′

p
τ
−→ p′

p � q
τ
−→ p′ � q

q
τ
−→ q′

p � q
τ
−→ p � q′

p ⊕ q
τ
−→ p p ⊕ q

τ
−→ q

p
a
−→ p′

p B q
a
−→ p′

p
τ
−→ p′

p B q
τ
−→ p′ B q p B q

τ
−→ q

than tree equivalence are presented for different aims. The readers are referred to [27, 28] for comprehensive reviews

on semantic equivalences.

As stated in the introduction, semantic equivalences can be classified as strong equivalences and weak equiva-

lences by their different treatments on internal transitions. A common characterization of the equivalences is that,

any semantics of a process p can be characterized denotationally by a function O(p), which constitute the observable

behaviors of p [27]. Then the equivalence ∼O is defined as p ∼O q⇐⇒ O(p) = O(q).

As is well known that, semantic equivalences are generally equivalence relations, i.e., they are reflexive, symmetric

and transitive. If the symmetric condition is relaxed, a corresponding preorder relation is obtained. Therefore, for a

given semantic equivalence ∼O, there exists its corresponding preorder vO such that p ∼O q ≡ p vO q∧ q vO p. Using

the above function O(p), the preorder vO can be defined by p vO q⇐⇒ O(p) ⊆ O(q).

Here, as an example, we present the definition of weak trace equivalence/preorder. For an action sequence δ =

α1 . . . αn, if there exist p, p1, . . . , pn ∈ T(Σ) such that p
α1
−→ p1

α2
−→ . . .

αn
−→ pn, then we call δ a trace of p, denoted

as p
δ
−→ or p

α1
−→ . . .

αn
−→. As for weak semantics, the weak transition relations and the weak traces are defined as

follows. We write p
a

=⇒ iff p
τ∗

−→
a
−→

τ∗

−→, where τ∗ denotes an arbitrary number of internal transitions. Hence, for an

observable action sequence δ = a1 . . . an, p
δ

=⇒ iff p
a1

=⇒ . . .
an

=⇒.

Definition 2.3.1 Let p, q be two processes and set T (p) = {δ ∈ Act∗|p
δ

=⇒} be the set of all weak trace of p. Then, p

and q are weak trace equivalent, denoted as p ∼t q, iff T (p) = T (q). Likewise, p and q are in weak trace preorder,

denoted as p vt q, iff T (p) ⊆ T (q).

Though, in this paper, we focus on the semantic preorder, the result can be safely extended to its corresponding

semantic equivalence.
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2.4 Precongruence Format

Given a preorder, one of the most frequently-asked questions is whether or not it can be preserved under some

frequently-used operators, such as prefixing, choice, parallel composition, etc., in classical process algebraic lan-

guages like CCS [18], CSP [14] and ACP [2]. For example, in language B, if p1 vt q1 and p2 vt q2, then one might

need to know whether p1 � p2 vt q1 � q2.

Definition 2.4.1 Let Σ be a signature. A context C(x1, . . . , xn) of n holes over Σ is simply a term in T(Σ) in which n

variables occur, each variable only once. If t1, . . . , tn are terms over Σ, then C(t1, . . . , tn) denotes the term obtained

by substituting t1 for the first variable occurring in C, t2 for the second variable occurring, etc. If x1, . . . , xn are all

different variables, then C(x1, . . . , xn) denotes a context of n holes in which xi is the ith occurring variable.

In the following, we give the definition on the precongruence of a preorder in a language.

Definition 2.4.2 Let L = (Σ,Ψ) be a language. A semantic preorder vO is precongruent in language L iff ∀1 ≤ i ≤

n : pi vO qi =⇒ C(p1, . . . , pn) vO C(q1, . . . , qn) for any context C(x1, . . . , xn) of n holes in language L, where pi and

qi are closed terms, i.e., processes, over Σ.

A precongruence format is to make restrictions on the syntax and transition rules to guarantee that, if a language

satisfies this format, then the given preorder is precongruent in it.

2.5 Division on Arguments of an Operator

In a given language L = (Σ,Ψ), the arguments of an operator f ∈ Σ may be divided into three classes as follows.

Definition 2.5.1 [5, 9, 29] An argument i ∈ N of an operator f is active if f has a rule in which xi appears as left-

hand side of a premise. A variable x occurring in a term t is receiving in t if t is the target of a rule in which x is the

right-hand side of a premise. An argument i ∈ N of an operator f is receiving if a variable x is receiving in a term t

that has a subterm f (t1, . . . , tn) with x occurring in ti.

Then, the set of all arguments Arg of an operator can be divided into three classes: active arguments Arga,

receiving arguments Argr and others Argo. Therefore, Arg = Arga ∪ Argr ∪ Argo.

Observe that, an argument can be an active argument and a receiving argument at the same time. Here, we make

a clear-cut on them and only call those arguments, which are both active arguments and receiving arguments, active

arguments. More formally, let Argr := Argr\Arga. Therefore, the receiving arguments, from now on, denote only

those arguments which are receiving arguments but not active arguments of Definition 2.5.1. Finally, Arga, Argr and

Argo will not have intersections.

The reason we make a clear-cut between active arguments and receiving arguments of an operator is that, it will be

more clear for our discussion in the following sections when it goes to the unnecessity of introducing patience rules

for receiving arguments into a language to make it precongruent under should testing preorder.
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Return to the transition rules shown in Table 1. Operator � has both its two arguments as active arguments.

However, the right-hand-side argument of operator B is neither an active argument nor a receiving argument. It should

be classified as other argument.

For the case of receiving arguments, let’s see a language by adding two operators f , g and two transition rules

r1, r2 into language B, where r1 =
x1

c1
−→ x′1, x2

c2
−→ x′2

f (x1, x2)
a1
−→ g(x′1, x

′
2)

, r2 =
x1

b1
−→ x′1

g(x1, x2)
a2
−→ h(x2)

. Note that, the second argument of

operator g has its second argument as a receiving argument.

Finally, patience rules of an operator, which have been defined in the introduction, can also be divided into three

classes, because they are defined in accordance with the arguments of the operator. Therefore, there exist three classes

of patience rules, i.e., patience rules for receiving arguments, patience rules for receiving arguments, and patience

rules for other arguments. Again, these three classes of patience rules have no intersections.

3 Formal Definitions Of Should Testing Preorder

Should testing preorder was firstly proposed in [7], and then was extensively studied in [22]. It is a semantic preorder

based on testing theory [20]. In this paper, we work with its equivalent denotational characterization, since it is more

straight to retrieve a precongruence format from its denotational characterization.

First of all, the definition of impossible future pair, F+ pair in [22], is introduced.

Definition 3.0.2 (σ,Φ) ∈ Act∗ × P(Act+) is an impossible future pair of process p iff there exists some p′ such that

p
σ

=⇒ p′ ∧ Φ ∩ T (p′) = ∅, where T (p′) = {δ ∈ Act∗ | p′
δ

=⇒}. The set of all impossible future pairs of process p is

called impossible future of p, denoted by I(p).

Note that, in the above definition, Φ does not contain ε since Φ ∈ P(Act+).

Besides, some other definitions are needed.

1. δ � σ iff δ is a prefix of σ.

2. If δ � σ, then δ−1σ = µ such that δµ = σ. Therefore, δ−1δ = ε.

3. δ ∈↓ Φ iff ∃σ ∈ Φ : δ � σ.

4. δ−1Φ = {δ−1σ|σ ∈ Φ}. Therefore, if δ ∈ Φ, then ε ∈ δ−1Φ. To make it complete, we define that δ−1Φ = {ε} if

@σ ∈ Φ : δ � σ. Note that, in its original definition in [7, 22], δ−1 is not defined as a complete function like that.

However, it will be useful in the following technical parts to define it as a complete function.

Definition 3.0.3 Let p and q be two processes. p and q are in should testing preorder relation, denoted as p vst q, iff

∀(σ,Φ) ∈ Act∗ × P(Act+) : (σ,Φ) ∈ I(p) =⇒ ∃µ ∈ {ε}∪ ↓ Φ − Φ : (σµ, µ−1Φ) ∈ I(q).
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In its original definition in [22], it only requires that µ ∈ {ε}∪ ↓ Φ. However, as also stated in [22], if µ is in Φ

then µ−1Φ will contain ε, which contradicts with the definition of impossible future pair. Therefore, we integrate this

implicit requirement, i.e., µ < Φ, into the definition.

In fact, for convenience, this definition can be restated as another one with simpler description as follows.

Definition 3.0.4 Let p and q be two processes. p and q are in should testing preorder relation, denoted as p vst q, iff

∀(σ,Φ) ∈ Act∗ × P(Act+) : (σ,Φ) ∈ I(p) =⇒ ∃µ ∈ Act∗ : (σµ, µ−1Φ) ∈ I(q) ∧ ε < µ−1Φ.

Proposition 3.0.1 Definition 3.0.3 is equivalent to Definition 3.0.4.

Proof. It is enough to show that µ ∈ {ε}∪ ↓ Φ − Φ is equivalent to ε < µ−1Φ.

(=⇒) If µ ∈ {ε}∪ ↓ Φ − Φ, then µ < Φ. Therefore, it is trivially true that ε < µ−1Φ.

(⇐=) If ε < µ−1Φ, then µ can not be in Φ and, by the complete definition of µ−1Φ, there must exist some σ ∈ Φ

such that µ � σ. Therefore, µ ∈ {ε}∪ ↓ Φ − Φ. �

To make clear the above definitions, we present two examples, which will be further discussed in the next section.

1. A simple case. See p2 and q2 in Figure 1. It can be verified that p2 vst q2. For example, (c2, {b3}) ∈ I(p2) since,

after p2 evolves into p′2, T (p′2) ∩ {b3} = {b2} ∩ {b3} = ∅. Also, (c2, {b3}) ∈ I(q2) since after q2 evolves into q′2,

T (q′2) ∩ {b3} = {b2} ∩ {b3} = ∅.

2. A more complex case. Recall the definition of f at the end of Section 2.5. See f (p1, p2) and f (q1, q2) in the

leftmost two graphs of Figure 2. It can be easily verified that (a1, {a2b3}) ∈ I( f (p1, p2)). On the other hand,

though (a1, {a2b3}) < I( f (q1, q2)), we have a2 ∈ {ε}∪ ↓ {a2b3} − {a2b3} and (a1a2, {b3}) ∈ I( f (q1, q2)). In fact,

f (p1, p2) vst f (q1, q2).

4 Intuitive Motivations On Precongruence Formats

This section gives representative examples to show some intuitions on obtaining a precongruence format for should

testing preorder. It should be noted that, in this section, we are mainly concerned with the intuitive motivations. The

results retrieved in this section will be formally defined and proved in the next section. Also, as the starting point, we

assume the basic language B which has been introduced as an example in section 2.

4.1 Patience Rules for Non-Active Arguments

Adding rules r1 =
x1

c1
−→ x′1, x2

c2
−→ x′2

f (x1, x2)
a1
−→ g(x′1, x

′
2)

, r2 =
x1

b1
−→ x′1

g(x1, x2)
a2
−→ h(x2)

, r3 =
x1

b3
−→ x′1

h(x1)
b3
−→
√ , r4 =

x1
b2
−→ x′1

h(x1)
b2
−→
√ and their

associated patience rules for active arguments into language B, we get a new language named B1.

By Definition 2.5.1, to decide the division of some argument of a given operator, we need to take into consideration

all transition rules in which the operator appears. Operator f only appears in rule r1, where both of its arguments occur
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Figure 1: Before composition using the operator f , p1 and q1, p2 and q2 are in should testing preorder, respectively.

Figure 2: f (p1, q1) and f (p2, q2) are in should testing preorder even no patience rules for receiving arguments are in

the language.

in the left-hand side of the premises and therefore are active arguments. Operator g appears in both rule r1 and r2. Its

first argument x1 is an active argument by rule r2 and its second argument x2 is a receiving argument by rule r1.

In Figure 1, it can be easily verified that p1 vst q1 and p2 vst q2. Now, if further add patience rules for the second

argument of g(x1, x2) into language B1 and obtain another language B2, then we have f (p1, p2) vst f (q1, q2) as shown

by the leftmost and the rightmost graphs in Figure 2. However, f (p1, p2) has already been in should testing preorder

with f (q1, q2) even in language B1 as shown by the two leftmost graphs in Figure 2.

Look into their differences in the two graphs for f (q1, q2) under languages B1 and B2, we find that, the function

of the patience rules for receiving arguments is that, without them, the τ transitions may be postponed for a bounded

number of observable actions, and this will make some branches of the labeled transition systems merge together.

Besides the showcase by example as above, we will prove in the next section that, this function does not break the

should testing preorder, though it might break some other preorders, e.g., impossible future preorder and possible

future preorder.

4.2 Negative Premises are Excluded

In fact, negative premises are hard to present in the preconguence formats for weak preorders. This can be witnessed

by means of a simple example shown in Figure 3: p2 and q2 satisfy almost all weak equivalences, including weak
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Figure 3: negative premises are not allowed in congruence formats for weak equivalences

bisimulation and testing equivalence. However, after adding rule r =
x1

a
−→ x′1, x2

a
9

f (x1, x2)
d
−→ g(x′1, x2)

into language B, f (p1, p2)

and f (q1, q2) are even not in weak trace equivalence.

Based on this observation, it is reasonable to consider about the subformats of de Simone format, in which negative

premises are excluded by definition.

5 Rule Formats

After intuitive examinations on the necessity or un-necessity of introducing some ingredients into a precongruence

format for should testing preorder, we will, in this section, prove that τDes-format of [24] is good candidate for it.

5.1 Definition of τDes-Format

As stated in the introduction, the de Simone language is employed as the starting point for a rule format for should

testing preorder.

Definition 5.1.1 [24] A de Simone language L is in τDes-format if

1. patience rules are the only rules with τ-premises, and

2. patience rules for active arguments are all necessary.

In the following, a language is called τDes-language if it is in τDes-format. As an example, observe that language

B is a τDes-language since all transition rules in Table 1 are de Simone rules, all rules with τ-premises are patience

rules, and each active argument of the operators has a corresponding patience rule.

5.2 Ruloids And Ruloid Theorem On τDes-Format

Ruloids and the ruloid theorem originated from the works of Bloom [5, 4] for GSOS format. In this subsection, we

will introduce the ruloids and the ruloid theorem for τDes-format. The ruloid theorem will be useful for proving the

precongruence theorem in the following subsections.
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For a τDes-language L = (Σ,Ψ), the ruloids R(C, α), for a context C of n holes and an action α, are a set of

expressions like the transition rules:
{xi

αi
→ x′i }i∈I

C(x1, . . . , xn)
α
→ D(y1, . . . , yn)

(3)

such that yi ≡ x′i for i ∈ I and yi ≡ xi for i < I, where I ⊆ {1, 2, . . . , n}. These expressions characterize all possible

behaviors of the context C in the language. Besides, let R(C) denote the set of all ruloids of the context C of n holes,

i.e., R(C) =
⋃
{R(C, α)|α ∈ Act ∪ {τ}}. It should be noted that context D does not need to have exactly n holes. In

fact, after leaving out the copying operation in the de Simone format (the τDes-format is a subformat of the de Simone

format), the number of the holes of D should be less than or equivalent to n. But for convenience, in form (3), we still

write it as D(y1, . . . , yn).

Furthermore, two properties should be imposed on R(C, α). We call them soundness property and completeness

property, by a bit of abusing the terminologies.

Definition 5.2.1 Let L = (Σ,Ψ) be a τDes-language, and C(x1, . . . , xn) be any context of n holes in L. A set R(C, α)

of ruloids of form (3) are ruloids of context C and action α, with α ∈ Act ∪ {τ}, iff

• Soundness. Let r ∈ R(C, α) be a ruloid of form (3). If ζ is a closed Σ-substitution such that ζ(xi)
αi
→ ζ(x′i ) for all

i ∈ I, then there must exist a context D such that ζ(C(x1, . . . , xn))
α
→ ζ(D(y1, . . . , yn)).

• Completeness. Let ζ be any closed Σ-substitution. If ζ(C(x1, . . . , xn))
α
→, then there must exist a ruloid r of

form (3) in ruloids R(C, α), and ζ(xi)
αi
→ for all i ∈ I.

Below, we will present a strategy to retrieve the ruloids of context C and action α, and then prove that the obtained

ruloids satisfy the above two properties, which form the ruloid theorem.

Strategy 5.2.1 Let L = (Σ,Ψ) be a τDes-language. C(x1, . . . , xn) is any context of n holes in L and α ∈ Act ∪ {τ} is

an action.

1. If C ∈ V , i.e., C is a variable, then let R(C, α) = { x
α
→ x′

x
α
→ x′

}.

2. If C = f (x1, . . . , xn) with f ∈ Σ and ar( f ) = n, then let R(C, α) = ( f , α), where ( f , α) denotes the set of all rules

in Ψ whose sources are f (x1, . . . , xn) and outputs are α.

3. If C is any context. We can rewrite C(x1, . . . , xn) as f (C1(X1), . . . ,Cm(Xm)), where f ∈ Σ and ar( f ) = m. Note

that Xi ∩ X j = ∅ with 1 ≤ i, j ≤ m and i , j. Without loss of generality, we may suppose that Xi = xi1xi2 . . . ximi

for Ci is a context of mi holes. Now, let r be any ruloid of form (3) in ( f , α) and R(Ci, αi) be ruloids of context

Ci and action αi retrieved by induction on this strategy. Then, let R(C, α) contain all possible ruloids which can

be obtained by the following steps:

(a) randomly pick out from R(Ci, αi) a rule ri, for all i ∈ I;
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(b) substitute the variables x j in ri with xi j, for all 1 ≤ j ≤ mi;

(c) substitute xi
αi
→ x′i in the premise of r with ante(ri), for all i ∈ I.

Theorem 5.2.1 Let L = (Σ,Ψ) be a τDes-language, and C(x1, . . . , xn) be any context of n holes in L. The set of

ruloids R(C, α) obtained from the Strategy 5.2.1 is the ruloids of context C and action α with α ∈ Act ∪ {τ}.

Proof. Firstly, the obtained ruloids R(C, α) of context C and action α are all in form (3). This can be easily obtained

by the construction procedure in the Strategy 5.2.1.

Secondly, the obtained ruloids R(C, α) of context C and action α satisfy the soundness property. Let r ∈ R(C, α)

be a ruloid of form (3), where C is a context of n holes and α ∈ Act ∪ {τ} is an action. ζ is a closed Σ-substitution such

that ζ(xi)
αi
→ ζ(x′i ) for all i ∈ I.

i) if C ∈ V , then, without loss of generality, suppose C = x. The soundness property is trivially true from

R(C, α) = { x
α
→ x′

x
α
→ x′

};

ii) if C = f (x1, . . . , xn), then R(C, α) = ( f , α). Therefore, the soundness property is guaranteed by the transition

rules;

iii) if C is any context of n holes, then by Strategy 5.2.1, C(x1, . . . , xn) can be rewritten as f (C1(X1), . . . ,Cm(Xm))

for some operator f ∈ Σ and ar( f ) = m, and ante(r) consist of ante(r1), . . . , ante(rm), where ri ∈ R(Ci, αi) for all

1 ≤ i ≤ m. By the assumption of the soundness property that ante(r) is enabled in closed Σ-substitution ζ. Therefore,

by the induction hypothesis, cons(r1), . . . , cons(rm) are all enabled in ζ. This means that ζ(Ci(Xi))
αi
→ ζ(Di(Yi)) for

all 1 ≤ i ≤ m. In fact, cons(r1), . . . , cons(rm) constitute ante( f ). Still by the induction hypothesis on operator f , the

transition rules in ( f , α) guarantee the enableness of C(x1, . . . , xn)
α
→.

Finally, the obtained ruloids R(C, α) of context C and action α satisfy the completeness property, which can also

be easily obtained from the construction procedure of Strategy 5.2.1. �

As we can see that, for a ruloid of form (3), its premises need not include all xi for 1 ≤ i ≤ n. However, we can

add xi
ε
→ x′i , for all i ∈ {1, . . . , n}\I, into the premises, as shown in the form (4).

{xi
αi
→ x′i }i∈I{xi

ε
→ x′i }i∈{1,...,n}−I

C(x1, . . . , xn)
α
→ D(y1, . . . , yn)

(4)

In this case, ζ(xi)
ε
→ ζ(x′i ) denotes that subprocess ζ(xi) executes no transition. In other word, if xi

ε
→ x′i is an ε

transition in a ruloid r then when r is applied with some closed Σ-substitution ζ, subprocess ζ(xi) is not fired at all. In

this sense, form (4) and form (3) provide same function when applying any closed Σ-substitution ζ.

Note that, the ε transitions will not be added to the TSS. In fact, ruloids are not introducing any new elements into

the TSS, since by definition, a TSS is a pair (Σ,Ψ) where Σ is a set of function symbols and Ψ is a set of transition

rules assigned to the function symbols.

The introduction of ε transitions and thus form (4) will make Proposition 5.5.1 and its proof easier to be com-

prehended. In Proposition 5.5.1, we will show that, in τDes-languages, when process C(p1, . . . , pn) evolves into
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C′(p′1, . . . , p′n), by applying a ruloid, and produces a transition (observable action or τ transition), each of its subpro-

cesses pi also evolves into p′i and produces a transition (observable action, τ transition or ε transition).

Based on ruloids and ruloid theorem, we may restate patience rules with patience ruloids.

Definition 5.2.2 A ruloid of the form
xi

τ
−→ x′i

C(x1, . . . , xi, . . . , xn)
τ
−→ C(x1, . . . , x′i , . . . , xn)

with 1 ≤ i ≤ n is called a patience

ruloid of the ith argument of the context C.

A ruloid is called a plain ruloid if it is not a patience ruloid. Similar with the division in the patience rules, we

can also divide the patience ruloids into three classes, i.e., patience ruloids for active arguments, patience ruloids for

receiving arguments and patience ruloids for other arguments.

In fact, Strategy 5.2.1 has already provided a canonical way to retrieve this division. LetL be a de Simone language

and C be any context of n holes in it.

1. If adding patience rules for active arguments into the language, then after applying Strategy 5.2.1, patience

ruloids for active arguments are those patience ruloids in R(C, τ).

2. If further adding patience rules for receiving arguments into the language, then, after applying Strategy 5.2.1,

R(C, τ) contains both patience ruloids for active arguments and patience ruloids for receiving arguments. By

getting rid of those patience ruloids for active arguments obtained in the first point, we can obtain the patience

ruloids for receiving arguments.

Because this division is obtained indirectly from Strategy 5.2.1 and patience rules, it is hard to be used in the

following. Here, we propose another equivalent division which is directly based on the arguments of a context.

Definition 5.2.3 Let L = (Σ,Ψ) be a τDes-language, and C be any context of n holes. The ith argument of the context

C is active if there exists a plain ruloid r of form (3) in R(C, τ) such that xi appears as left-hand side of a premise.

The ith argument of the context C is receiving if it is not active and there exists another context D and a plain ruloid r

of form (3) in R(D) such that C(x′1, . . . , x
′
n) appears as the target of r and x′i appears as right-hand side of a premise.

Proposition 5.2.1 The division defined by Definition 5.2.3 is equivalent to the division obtained from Strategy 5.2.1

and patience rules.

Proof. (⇐=) Let L = (Σ,Ψ) be a de Simone language, and C be any context of n holes. If only adding patience

rules for active arguments into the language, we need to show that each active argument of the context C defined by

Definition 5.2.3 has a patience ruloid. We will prove by making an induction on the context C and Strategy 5.2.1.

1. If C ∈ V or C ∈ Σ, then it can be easily obtained from Strategy 5.2.1 and Definition 2.5.1.

2. If C is any context, then it can be rewritten as f (C1(X1), . . . ,Cm(Xm)). Assume that contexts C1, . . . ,Cm satisfy

that each active argument has a patience ruloid.
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3. We need to prove that each active argument of C defined by Definition 5.2.3 has a patience ruloid. Suppose that

the ith argument of C is an active argument. Then, by Definition 5.2.3, there exists a plain ruloid r of form (3) in

R(C, τ) such that xi appears as left-hand side of a premise. By Strategy 5.2.1, xi must appear as left-hand side

of a premise of some context. Without loss of generality, assume that xi is the kth argument of the C j. By the

induction hypothesis, the kth argument of C j is active and thus has a patience ruloid. Also by Strategy 5.2.1, the

jth argument of functor f is active and thus has a patience ruloid. Therefore, we have that the ith argument of C

has a patience ruloid by Strategy 5.2.1 and the above two patience ruloids for C j and f , respectively.

If further adding the patience rules for receiving arguments into the language, we need to prove that each receiving

argument of the context C defined by Definition 5.2.3 has a patience ruloid. Assume that the ith argument of context

C is receiving. Then, by Definition 5.2.3, there exist another context D and a plain ruloid r of form (3) in R(D) such

that C(x′1, . . . , x
′
n) appears as the target of r and x′i appears as right-hand side of a premise. We will prove by making

an induction on context C and Strategy 5.2.1.

1. If C ∈ V or C ∈ Σ, then, by Definition 2.5.1, the ith argument of C is receiving. Therefore, it should have a

patience rule by the hypothesis. By Strategy 5.2.1, each patience rule is also a patience ruloid.

2. If C is any context, then it can be rewritten as f (C1(X1), . . . ,Cm(Xm)). Assume that contexts C1, . . . ,Cm satisfy

that each receiving argument has a patience ruloid.

3. We need to prove that the ith argument of C defined by Definition 5.2.3 has a patience ruloid. By Strategy 5.2.1,

xi must appear as right-hand side of a premise of some context. Without loss of generality, assume that xi is

the kth argument of the C j. By the induction hypothesis, the kth argument of C j is receiving or active and thus

has a patience ruloid. Also by Strategy 5.2.1, the jth argument of functor f is receiving or active and thus has

a patience ruloid. Therefore, we have that the ith argument of C has a patience ruloid by Strategy 5.2.1 and the

above two patience ruloids for C j and f , respectively.

(=⇒) It is trivially true since, according to Strategy 5.2.1, each rule is also a ruloid. That is to say, we may

first obtain the division on patience rules from the division on patience ruloids in Definition 5.2.3, and then using

Strategy 5.2.1 to obtain the division from Strategy 5.2.1 and patience rules. �

5.3 Statement of Meta Theorem

First of all, we present the statement of meta theorem.

Theorem 5.3.1 Let L be a τDes-language and C be any context of n holes. ζ and ξ are two closed Σ-substitutions

mapping xi into pi and qi, respectively. If ∀1 ≤ i ≤ n : pi vst qi, then C(p1, . . . , pn) vst C(q1, . . . , qn).

In order to prove C(p1, . . . , pn) vst C(q1, . . . , qn) for some context C of n hole for the case of ∀1 ≤ i ≤ n : pi vst qi,

it is enough to prove it for the case of p1 vst q1 and ∀2 ≤ i ≤ n : pi ≡ qi. In fact, if the later is true, then we can
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deduce C(p1, . . . , pn) vst C(q1, . . . , qn) from C(p1, . . . , pn) vst C(q1, p2, . . . , pn) vst C(q1, q2, p3, . . . , pn) vst . . . vst

C(q1, q2, . . . , qn) and the transitivity of vst, which is a preorder relation. Therefore, the meta theorem is equivalent to

the following theorem.

Theorem 5.3.2 Let L be a τDes-language and C be any context of n holes. ζ and ξ are two closed Σ-substitutions

mapping xi into pi and qi, respectively. If p1 vst q1 and ∀2 ≤ i ≤ n : pi ≡ qi, then C(p1, . . . , pn) vst C(q1, . . . , qn).

Furthermore, by the definition of should testing preorder in Definition 3.0.4, to prove the above theorem, it is

equivalent to prove that, if p1 vst q1 and ∀2 ≤ i ≤ n : pi ≡ qi, then, for any (σ,Φ) ∈ Act∗ × P(Act+), if (σ,Φ) ∈

I(C(p1, . . . , pn)) then, there exists some µ ∈ Act∗ such that (σµ, µ−1Φ) ∈ I(C(q1, . . . , qn)) and ε < µ−1Φ.

We will prove it by the steps showing in the following several subsections from Section 5.4 to Section 5.9. Finally,

in Section 5.10, a review on these steps will be made via a proof sketch.

5.4 A Stronger Theorem

In this subsection, we will show that, for any (σ,Φ) ∈ I(C(p1, . . . , pn)), there exists some Φ′ such that

1. (σ,Φ′) ∈ I(C(p1, . . . , pn)),

2. if there exists some µ ∈ Act∗ such that (σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)), then (σµ, µ−1Φ) ∈ I(C(q1, . . . , qn)), and

3. if ε < µ−1Φ′ then ε < µ−1Φ.

With this Φ′, to prove Theorem 5.3.2, it is enough to prove the following theorem:

Theorem 5.4.1 Let L be a τDes-language and C be any context of n holes. ζ and ξ are two closed Σ-substitutions

mapping xi into pi and qi, respectively. If p1 vst q1 and ∀2 ≤ i ≤ n : pi ≡ qi, then, for any (σ,Φ) ∈ Act∗ × P(Act+),

if (σ,Φ) ∈ I(C(p1, . . . , pn)) then, there exists some µ ∈ Act∗ such that (σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)) and ε < µ−1Φ′,

where Φ′ is the one introduced above.

Proposition 5.4.1 Theorem 5.4.1 implies Theorem 5.3.2.

Proof. Suppose that (σ,Φ) ∈ Act∗ × P(Act+) is any impossible future pair such that (σ,Φ) ∈ I(C(p1, . . . , pn)). By the

requirements of Φ′ in the above, we have

1. (σ,Φ′) ∈ I(C(p1, . . . , pn)),

2. if there exists some µ ∈ Act∗ such that (σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)), then (σµ, µ−1Φ) ∈ I(C(q1, . . . , qn)), and

3. if ε < µ−1Φ′ then ε < µ−1Φ.
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By Theorem 5.4.1 and (σ,Φ) ∈ I(C(p1, . . . , pn)), there exists some µ ∈ Act∗ such that (σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn))

and ε < µ−1Φ′. Therefore, we have, by the second point above, (σµ, µ−1Φ) ∈ I(C(q1, . . . , qn)), and, by the third point

above, ε < µ−1Φ. �

The remaining part of this subsection is devoted to show a strategy to construct Φ′ from Φ and then prove that the

obtained Φ′ satisfies the above-mentioned three requirements.

Strategy 5.4.1 By the definition of impossible future pair and (σ,Φ) ∈ I(C(p1, . . . , pn)), there exists some C′(p′1, . . . , p′n)

such that C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n) and T (C′(p′1, . . . , p′n)) ∩ Φ = ∅. Therefore, for all δ ∈ Φ, we have

δ < T (C′(p′1, . . . , p′n)). Then, Φ′ is constructed by the following steps:

1. let Φ′ = ∅.

2. for all δ ∈ Φ,

(a) there must exist its maximal prefix δ′ ∈ Act∗ such that C′(p′1, . . . , p′n)
δ′

=⇒ and δ = δ′aδ′′, where a ∈ Act

denotes the observable action after δ′, and then,

(b) add δ′a into set Φ′.

Note that, the maximal prefix δ′ of some action sequence δ satisfying some given conditions, implies that no other

prefix δ′′′ of δ satisfies both |δ′′′| > |δ′| and the given conditions. Besides, Φ ∈ Act+ implies that each δ ∈ Φ has a

corresponding δ′a ∈ Φ′.

Below, we will show, by the following three propositions, that the obtained Φ′ satisfies the above-mentioned three

conditions.

Proposition 5.4.2 If (σ,Φ) ∈ I(C(p1, . . . , pn)), then (σ,Φ′) ∈ I(C(p1, . . . , pn)), where Φ′ is the one obtained by

Strategy 5.4.1.

Proof. By Strategy 5.4.1, each element in Φ′ is in the form δ′a, where δ′ is a maximal prefix of some δ ∈ Φ sat-

isfying that C′(p′1, . . . , p′n)
δ′

=⇒. Therefore, by the maximality of δ′, we have that C′(p′1, . . . , p′n)
δ′a
;, i.e., δ′a <

T (C′(p′1, . . . , p′n)). Then, by the randomicity of δ′a in Φ′, we have Φ′ ∩ T (C′(p′1, . . . , p′n)) = ∅. Therefore, (σ,Φ′) ∈

I(C(p1, . . . , pn)). �

Proposition 5.4.3 Let (σ,Φ) ∈ I(C(p1, . . . , pn)) and Φ′ be the one constructed by Strategy 5.4.1. If there exists some

µ ∈ Act∗ such that (σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)), then (σµ, µ−1Φ) ∈ I(C(q1, . . . , qn)).

Proof. Suppose that there exists some µ ∈ Act∗ such that (σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)). By the definition of impossi-

ble future pair, there exists some C′′(q′′1 , . . . , q
′′
n ) such that C(q1, . . . , qn)

σµ
=⇒ C′′(q′′1 , . . . , q

′′
n ) and T (C′′(q′′1 , . . . , q

′′
n )) ∩

µ−1Φ′ = ∅. Therefore, for all δ′′′ ∈ µ−1Φ′, we have δ′′′ < T (C′′(q′′1 , . . . , q
′′
n )).
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Now, by Strategy 5.4.1, each element in Φ′ is in form δ′a, where δ′aδ′′ = δ and δ ∈ Φ. Without loss of

generality, we suppose that δ′′′ = µ−1δ′a. By δ′′′ < T (C′′(q′′1 , . . . , q
′′
n )), µ−1δ′a < T (C′′(q′′1 , . . . , q

′′
n )) and thus

µ−1δ < T (C′′(q′′1 , . . . , q
′′
n )).

Finally, by the 1-1 correspondence between δ and δ′a, we have that µ−1δ < T (C′′(q′′1 , . . . , q
′′
n )) for all δ ∈ Φ, i.e.,

µ−1Φ ∩ T (C′′(q′′1 , . . . , q
′′
n )) = ∅.

Then, we can obtain (σµ, µ−1Φ) ∈ I(C(q1, . . . , qn)) by the definition of impossible future pair. �

Proposition 5.4.4 If ε < µ−1Φ′ then ε < µ−1Φ.

Proof. By Proposition 3.0.1, µ ∈ {ε}∪ ↓ Φ − Φ is equivalent to ε < µ−1Φ. Therefore, if ε < µ−1Φ′, then µ ∈ {ε}∪ ↓

Φ′ − Φ′.

By the Strategy 5.4.1, each element in Φ′ is a prefix of some element in Φ. Therefore, if µ ∈ {ε}∪ ↓ Φ′ − Φ′ then

there should be µ ∈ {ε}∪ ↓ Φ − Φ. Finally, by µ ∈ {ε}∪ ↓ Φ − Φ is equivalent to ε < µ−1Φ, we have ε < µ−1Φ. �

5.5 Decomposing (σ,Φ′)

The objective of this subsection is to decompose (σ,Φ′) ∈ I(C(p1, . . . , pn)), which is obtained in the previous subsec-

tion, into its counterparts for subprocesses pi, i.e., to obtain (σi,Φ
′
i) ∈ I(pi).

First of all, we need a proposition to show the decomposability of weak traces in τDes-languages.

Proposition 5.5.1 Let L = (Σ,Ψ) be an τDes-language, and C(x1, . . . , xn) be any context of n holes. Suppose that ζ

is any closed Σ-substitution mapping xi into pi. If σ is a trace in T (C(p1, . . . , pn)), then, for all 1 ≤ i ≤ n, there is a

trace σi in T (pi) such that, when C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n), we have pi
σi

=⇒ p′i .

Proof. Since C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n), we have C(p1, . . . , pn) = C0(p10, . . . , pn0)
α1
−→ C1(p11, . . . , pn1)

α2
−→

. . .
αm
−→ Cm(p1m, . . . , pnm) = C′(p′1, . . . , p′n), where ∀1 ≤ j ≤ m : α j ∈ Act ∪ {τ} and σ′ = α1 . . . αm is equivalent to σ if

all its τ transitions are omitted.

We will prove this proposition by making an induction on the length of σ′.

1) |σ′| = 1. Letσ′ = α. By the completeness property of the ruloids, there should be a ruloid of form (3) in R(C, α),

and pi
αi
−→ for all i ∈ I. As shown before that, we have a ruloid of form (4) corresponding with form (3). Therefore,

there exist pi
αi
−→ p′i for all i ∈ I and pi

ε
−→ p′i for all i ∈ {1, . . . , n} − I, i.e., when C(p1, . . . , pn)

σ
=⇒ C′(p′1, . . . , p′n),

we have pi
αi

=⇒ p′i for all i ∈ I and pi
τ∗

−→ p′i for all i ∈ {1, . . . , n} − I.

2) Assume that, when |σ′| = m − 1 with m ≥ 1, if σ is a trace in T (C(p1, . . . , pn)) then, for all 1 ≤ i ≤ n, there

should be a trace σi in T (pi) such that, when C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n), we have pi
σi

=⇒ p′i .

3) For |σ′| = m, suppose that C(p1, . . . , pn) = C0(p10, . . . , pn0)
α1
−→ C1(p11, . . . , pn1)

α2
−→ . . .

αm
−→ Cm(p1m, . . . , pnm) =

C′(p′1, . . . , p′n). By the induction hypothesis, when C(p1, . . . , pn) = C0(p10, . . . , pn0)
α1
−→ C1(p11, . . . , pn1)

α2
−→ . . .

αm−1
−→

Cm−1(p1(m−1), . . . , pn(m−1)) = C′′(p′′1 , . . . , p′′n ), we have pi
σ′′i

=⇒ p′′i . Now, when Cm−1(p1(m−1), . . . , pn(m−1)) = C′′(p′′1 , . . . , p′′n )
αm
−→
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Cm(p1m, . . . , pnm) = C′(p′1, . . . , p′n), we have p′′i
α′m

=⇒ p′i . Therefore, when C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n), we have

pi
σ′′i α

′
m

=⇒ p′i . �

By (σ,Φ′) ∈ I(C(p1, . . . , pn)) and the definition of impossible future pair, there exists some C′(p′1, . . . , p′n) such

that C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n) and T (C′(p′1, . . . , p′n)) ∩ Φ′ = ∅.

Now, by Proposition 5.5.1, the procedure C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n) can be decomposed into pi
σi

=⇒ p′i for

all 1 ≤ i ≤ n.

For the case of Φ′, we will propose a strategy to construct Φ′i as follows.

Strategy 5.5.1 By Strategy 5.4.1, all the elements of Φ′ are in form δ′a such that C′(p′1, . . . , p′n)
δ′

=⇒. Now, for some

subprocess pi,

1. for all action sequences ν ∈ Act∗, let set Ai
ν = ∅.

2. for all δ′a ∈ Φ′ and for all C′′(p′′1 , . . . , p′′n ) with C′(p′1, . . . , p′n)
δ′

=⇒ C′′(p′′1 , . . . , p′′n ) ,

(a) by Proposition 5.5.1, decompose δ′ into δ′i , and

(b) add all elements of set {a ∈ Act|p′′i
a

=⇒} into set Ai
δ′i

.

3. let Φ′i be the set
⋃
{δ′ib|A

i
δ′i
, ∅ ∧ b ∈ Act ∧ b < Ai

δ′i
}. Note: if some set Ai

δ′i
= Act then let b = β for some β < Act.

In fact, set Ai
δ′i

is the set of all possible next actions of p′i after it executes a weak trace δ′i . And thus, b in the third

point of the above strategy is used to denote that, for any p′′i with p′i
δ′i

=⇒ p′′i , p′′i
b
;, though there exists some p′′i such

that p′i
δ′i

=⇒ p′′i . Furthermore, Φ′i contains all δ′ib like that. Therefore, for some δ′i with Ai
δ′i
, ∅, if δ′ia < Φ′i then there

must exist some p′′i such that p′i
δ′i

=⇒ p′′i and p′′i
a

=⇒.

Below, we will prove that (σi,Φ
′
i) ∈ I(pi).

Proposition 5.5.2 (σi,Φ
′
i) ∈ I(pi).

Proof. First, by (σ,Φ′) ∈ I(C(p1, . . . , pn)), we have C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n), Then by Proposition 5.5.1,

pi
σi

=⇒ p′i when C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n).

Now, it is enough to prove that, for all elements δ′′i in Φ′i , there is p′i
δ′′i
;.

Observe that, by Strategy 5.5.1, δ′′i must be in the form δ′ib such that p′i
δ′i

=⇒. Moreover, though p′i
δ′i

=⇒, b should

satisfy that, for all p′′i with p′i
δ′i

=⇒ p′′i , p′′i
b
;. Therefore, there should be p′i

δ′i b
;.

By the randomicity of δ′′i , and thus δ′ib, we have that, for all elements δ′′i in Φ′i , there is p′i
δ′′i
;. �

5.6 Application of Should Testing Preorder in Subprocesses

By now, we have an impossible future pair for each subprocess pi, i.e., (σi,Φ
′
i) ∈ I(pi). Therefore, by the hypothesis

that pi vst qi and the definition of should testing preorder, there exist some µi and q′i such that (σiµi, µ
−1
i Φ′i) ∈ I(qi),

i.e., qi
σiµi
=⇒ q′i and µ−1

i Φ′i ∩ T (q′i) = ∅.
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Furthermore, as stated in Section 5.3, we can safely suppose that p1 vst q1 and, for all 2 ≤ i ≤ n, pi ≡ qi.

Therefore, we will have

1. there exists some µ1 ∈ Act∗ such that (σ1µ1, µ
−1
1 Φ′1) ∈ I(q1) and ε < µ−1

1 Φ′1, and

2. when 2 ≤ i ≤ n, for all µi such that ε < µ−1
i Φ′i and µi ∈ T (p′i), there is (σiµi, µ

−1
i Φ′i) ∈ I(qi), where, by definition

of impossible future pair and (σi,Φ
′
i) ∈ I(pi), pi

σi
=⇒ p′i and T (p′i) ∩ Φ′i = ∅. Note that, there always exists a

such µi since, by pi ≡ qi and (σi,Φ
′
i) ∈ I(pi), we can simply let µi = τ∗ and thus (σiµi, µ

−1
i Φ′i) = (σi,Φ

′
i) ∈

I(pi) = I(qi).

The first clause is trivial from the definition of should testing preorder, we will prove the second clause as follows.

Proposition 5.6.1 Let (σi,Φ
′
i) ∈ I(pi). Then, there exists some p′i such that pi

σi
=⇒ p′i and T (p′i) ∩ Φ′i = ∅. For any

νi ∈ T (p′i), if ε < ν−1
i Φ′i then (σiνi, ν

−1
i Φ′i) ∈ I(pi).

Proof. By the fact that νi ∈ T (p′i), to prove that (σiνi, ν
−1
i Φ′i) ∈ I(pi), it is enough to show that there exists some p′′i

such that pi
σi

=⇒ p′i
νi

=⇒ p′′i and T (p′′i ) ∩ ν−1
i Φ′i = ∅.

By νi ∈ T (p′i), there must exist some p′′i such that p′i
νi

=⇒ p′′i . We need to show that T (p′′i ) ∩ ν−1
i Φ′i = ∅, i.e.,

∀µi ∈ ν
−1
i Φ′i : µi < T (p′′i ).

To show ∀µi ∈ ν
−1
i Φ′i : µi < T (p′′i ), it is enough to show that ∀µiνi ∈ Φ′i : µiνi < T (p′i) since p′i

νi
=⇒ p′′i .

Finally, it is guaranteed by T (p′i) ∩ Φ′i = ∅. �

In the remaining of this subsection, we will prove several propositions which will be used in the following subsec-

tions. All these propositions are based on the assumptions that (σi,Φ
′
i) ∈ I(pi), pi vst qi and thus there exists some

µi ∈ Act∗ such that (σiµi, µ
−1
i Φ′i) ∈ I(qi) and ε < µ−1

i Φ′i .

The first proposition states that µi should be in T (p′i), where, by definition of impossible future pair and (σi,Φ
′
i) ∈

I(pi), pi
σi

=⇒ p′i and T (p′i) ∩ Φ′i = ∅.

Proposition 5.6.2 µi ∈ T (p′i).

Proof. It can be easily obtained by Strategy 5.5.1 and the requirement that ε < µ−1
i Φ′i .

By Strategy 5.5.1, each elements in Φ′i are in the form δ′ib such that p′i
δ′i

=⇒ but p′i
δ′i b
;.

Therefore, µi can only be a prefix of some δ′ib in Φ′i . Moreover, µi cannot be δ′ib since ε < µ−1
i Φ′i .

Finally, µi must be a proper prefix of δ′ib. Then, by p′i
δ′i b
;, we have that µi ∈ T (p′i). �

The second proposition states that we can extend σiµi randomly along the weak traces of p′i , and obtain another

pair (σiµiνi, (µiνi)−1Φ′i), which is also an impossible future pair of pi. It is much similar with Proposition 5.6.1, we

treat it as an individual proposition just for the convenience of using it.

Proposition 5.6.3 Let (σiµi, µ
−1
i Φ′i) ∈ I(pi). Then, there exists some p′i such that pi

σiµi
=⇒ p′i and T (p′i) ∩ µ

−1
i Φ′i = ∅.

For any νi ∈ T (p′i), if ε < (µiνi)−1Φ′i then (σiµiνi, (µiνi)−1Φ′i) ∈ I(pi).
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Proof. It is trivially true from Proposition 5.6.1 by substituting σi with σiµi and Φ′i with µ−1
i Φ′i . �

Moreover, as a corollary of the above two propositions, µiνi, which is stated in the above proposition for the case

of (σiµi, µ
−1
i Φ′i) ∈ I(pi), should be also in T (p′i).

Proposition 5.6.4 µiνi ∈ T (p′i).

Proof. It is trivially true from Proposition 5.6.2 and Proposition 5.6.3. �

5.7 Seeking for σiµi in C(p1, . . . , pn)

Though, in the preceding subsection, we have shown that there exist some impossible future pairs (σiµi, µ
−1
i Φ′i) for all

subprocesses qi, we cannot expect that any (σiµi, µ
−1
i Φ′i) ∈ I(qi) for all 1 ≤ i ≤ n can directly compose (σµ, µ−1Φ′) ∈

I(C(q1, . . . , qn)). In fact, to show that there exists some µ such that (σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)) and ε < µ−1Φ′, we

need to make more restricts on µi.

To this end, we are aiming at seeking some specific σiµi for all 1 ≤ i ≤ n in this subsection. After retrieving these

σiµi, we will, in Section 5.8, show that they can compose a weak trace σµ of C(q1, . . . , qn), and then, in Section 5.9,

show that a variant of µ, called µ′, will make (σµ′, µ′−1Φ′) ∈ I(C(q1, . . . , qn)) hold, which will finish our proof.

Before that, we conclude the results in Section 5.6 as follows.

1. For the case of pi with 2 ≤ i ≤ n, by the hypothesis that ∀2 ≤ i ≤ n : pi ≡ qi and the fact that (σi,Φ
′
i) ∈ I(pi), we

have (σi,Φ
′
i) ∈ I(qi). Then, by Proposition 5.6.1, to keep (σiµi, µ

−1
i Φ′i) ∈ I(qi), µi can be any action sequence

such that ε < µ−1
i Φ′i . Observe that, by Proposition 5.6.2, the requirement µi ∈ T (p′i), in the beginning of Section

5.6 for the case of pi with 2 ≤ i ≤ n, has been implied in (σiµi, µ
−1
i Φ′i) ∈ I(qi).

2. For the case of p1, since p1 vst q1 and (σ1,Φ
′
1) ∈ I(p1), we have that, there exists some µ1 such that

(σ1µ1, µ
−1
1 Φ′1) ∈ I(q1) and ε < µ−1

1 Φ′1. Furthermore, by Proposition 5.6.2, µ1 ∈ T (p′1), where p′1 satisfies

that p1
σ1

=⇒ p′1 and T (p′1) ∩ Φ′1 = ∅.

The following proposition provides a way to obtain those specific σiµi for all 1 ≤ i ≤ n. Suppose that (σ,Φ′) ∈

I(C(p1, . . . , pn)), and thus, by the definition of impossible future pair, there exists C′(p′1, . . . , p′n) such that C(p1, . . . , pn)
σ

=⇒

C′(p′1, . . . , p′n) and T (C′(p′1, . . . , p′n)) ∩ Φ′ = ∅.

Proposition 5.7.1 If some µ ∈ Act∗ and process C′′(p′′1 , . . . , p′′n ) satisfy that C′(p′1, . . . , p′n)
µ

=⇒ C′′(p′′1 , . . . , p′′n ) and,

after decomposing µ using Proposition 5.5.1, µ1 is equivalent to the µ1 in (σ1µ1, µ
−1
1 Φ′1) ∈ I(q1), then the obtained µi

will satisfy that (σiµi, µ
−1
i Φ′i) ∈ I(qi) for all 1 ≤ i ≤ n.

Proof. We divide it into two cases:

If i = 1, then p1 v q1. (σ1µ1, µ
−1
1 Φ′i) ∈ I(q1) comes directly from the hypothesis.
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If 2 ≤ i ≤ n, then pi ≡ qi. By the fact that (σi,Φ
′
i) ∈ I(pi) and pi

σi
=⇒ p′i when C(p1, . . . , pn)

σ
=⇒ C′(p′1, . . . , p′n),

we have that pi
σiµi
=⇒ p′′i since C′(p′1, . . . , p′n)

µ
=⇒ C′′(p′′1 , . . . , p′′n ). Then, by Proposition 5.6.1 and (σi,Φ

′
i) ∈ I(pi), we

have (σiµi, µ
−1
i Φ′i) ∈ I(pi) since µi ∈ T (p′i). Finally, by pi ≡ qi, we have (σiµi, µ

−1
i Φ′i) ∈ I(qi). �

Proposition 5.7.2 There always exists a such µ ∈ Act∗ satisfying the conditions of Proposition 5.7.1.

Proof. This result can be easily obtained from the way constructing Φ′i from Φ′ in Strategy 5.5.1. To make ε < µ−1
1 Φ′1,

µ1 should be a proper prefix of some δ′1b in Φ′1. Therefore, there should be some δ′a in Φ′ corresponding with δ′1b in

Φ′1, which means that there must exist a proper prefix of δ′a satisfying the condition of µ in Proposition 5.7.1. �

5.8 Composing σµ in C(q1, . . . , qn) from σiµi

Continuing with the preceding subsection, we will show that, the obtainedσiµi can also compose intoσµ in C(q1, . . . , qn),

i.e., there exists some C′′(q′′1 , . . . , q
′′
n ) such that C(q1, . . . , qn)

σµ
=⇒ C′′(q′′1 , . . . , q

′′
n ) and, at the same time, qi

σiµi
=⇒ q′′i .

Observe that, here, q′′i does not need to be the q′i obtained from (σiµi, µ
−1
i Φ′i) ∈ I(qi). In fact, we will show, in the

following proposition, that, only when the ith argument of C′′ is an active argument, can q′′i be safely equivalent to q′i .

To make it more clear, the following proposition will substitute σµ with σ. Certainly, the obtained result will be

also suitable for the above requirement.

Before that, we need one more definition on delay processes. Suppose that σ ∈ T (p) for some process p, then

delay processes of p
σ

=⇒ are those satisfying that 1) if |σ| = 0, then p itself is the delay process, and 2) if |σ| ≥ 1, then

let σ = σ′a and delay processes are those processes p′ such that p
σ

=⇒
a
−→ p′.

Proposition 5.8.1 Let L = (Σ,Ψ) be a τDes-language, and C(x1, . . . , xn) be any context of n holes. Suppose that ζ

and ξ are any two closed Σ-substitution mapping xi into pi and qi, respectively. If for all 1 ≤ i ≤ n, pi vt qi, then

1. for any trace σ ∈ T (C(p1, . . . , pn)) and some context C′ such that C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n), there exist

q′1, . . . , q
′
n such that C(q1, . . . , qn)

σ
=⇒ C′(q′1, . . . , q

′
n), and

2. if there exists a patience ruloid for the ith argument of context C′ then q′i can be any process such that qi
σi

=⇒ q′i ,

and if there does not exist a patience ruloid for the ith argument of context C′ then q′i can be any delay processes

of qi
σi

=⇒, where σi is obtained by decomposing σ into the weak traces of subprocess pi.

Proof. Suppose that σ is a trace of C(p1, . . . , pn), and C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n). By Proposition 5.5.1, when

C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n), we have pi
σi

=⇒ p′i for all 1 ≤ i ≤ n. Then, by pi vt qi, we have qi
σi

=⇒ for all

1 ≤ i ≤ n.

For C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n), we have C(p1, . . . , pn) = C0(p10, . . . , pn0)
α1
−→ C1(p11, . . . , pn1)

α2
−→ . . .

αm
−→

Cm(p1m, . . . , pnm) = C′(p′1, . . . , p′n), where ∀1 ≤ j ≤ m : α j ∈ Act ∪ {τ} and σ′ = α1 . . . αm is equivalent to σ if all its τ

transitions are omitted.
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Suppose that the sequence of plain ruloids applied in the above procedure is r1r2 . . . rk. It is enough to show

that C(q1, . . . , qn) can also apply ruloids r1r2 . . . rk in the same order, and C(q1, . . . , qn)
σ

=⇒ C′(q′1, . . . , q
′
n) for some

q′1, . . . , q
′
n. Furthermore, if there exists a patience ruloid for the ith argument of context C′ then q′i can be any process

such that qi
σi

=⇒ q′i , and if there does not exist a patience ruloid for the ith argument of context C′ then q′i can be any

delay processes of qi
σi

=⇒.

We will prove it by making an induction on k.

1) k = 0. Then, C = C′ and only patience ruloids are applied when C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n) and thus σ =

τ∗. By Proposition 5.5.1, σi = τ∗ for all 1 ≤ i ≤ n. Therefore, there must exist q′i , . . . , q
′
n such that C(q1, . . . , qn)

τ∗

=⇒

C′(q′1, . . . , q
′
n) since an extreme possibility is that qi ≡ q′i for all 1 ≤ i ≤ n. Now, if there exists a patience ruloid for

the ith argument of context C′ then q′i can be any process such that qi
τ∗

−→ q′i by the soundness property of ruloids and

the definition of patience ruloids. On the other hand, if there does not exist a patience ruloid for the ith argument of

context C′ then q′i can be qi.

2) Assume that, when k = m − 1 with m ≥ 1, the above statement holds.

3) For k = m, suppose that, C(p1, . . . , pn)
σ

=⇒ C′′(p′′1 , . . . , p′′n ) and C′′(p′′1 , . . . , p′′n )
δ

=⇒ C′(p′1, . . . , p′n), where the

first k − 1 plain ruloids of r1r2 . . . rk are applied when C(p1, . . . , pn)
σ

=⇒ C′′(p′′1 , . . . , p′′n ) and the kth plain ruloid is

applied when C′′(p′′1 , . . . , p′′n )
δ

=⇒ C′(p′1, . . . , p′n).

By Proposition 5.5.1, there exist σi, δi for all 1 ≤ i ≤ n such that pi
σi

=⇒ p′′i and p′′i
δi

=⇒ p′i . By pi vt qi, we have

qi
σiδi
=⇒.

Then, by the induction hypothesis, C(q1, . . . , qn) can also apply the first k − 1 ruloids and reaches C′′(q′′1 , . . . , q
′′
n ).

Moreover, if there exists a patience ruloid for the ith argument of context C′′ then q′′i can be any process such that

qi
σi

=⇒ q′′i , and if there does not exist a patience ruloid for the ith argument of context C′′ then q′′i can be any delay

process of qi
σi

=⇒.

Furthermore, for all 1 ≤ i ≤ n, let q′′i be any delay process of qi
σi

=⇒ such that qi
σi

=⇒ q′′i
δi

=⇒. There always exists

a such q′′i since qi
σiδi
=⇒.

Suppose that the kth ruloid rk is in form (3). Then, by the definition of the τDes-format, all arguments in

I have corresponding patience ruloids since they are all active arguments of C′′ by Definition 5.2.3. Therefore,

by the soundness property of the ruloids, we may apply the patience ruloids for the arguments in I and obtain

C′′(q′′1 , . . . , q
′′
n )

τ∗

=⇒ C′′(q′′′1 , . . . , q
′′′
n ), such that q′′′i ≡ q′′i if i < I and q′′′i

δi
−→ if i ∈ I. Then, also by the sound-

ness property of the ruloids, ruloid rk will be applied and C′′(q′′′1 , . . . , q
′′′
n )

δ
−→ C′(q′′′′1 , . . . , q′′′′n ), where q′′′′i ≡ q′′i if

i < I and q′′′′i is any process satisfying q′′′i
δi
−→ q′′′′i if i ∈ I.

Now, we can see that q′′′′i is indeed a delay process of qi
σiδi
=⇒.

Finally, if there exists a patience ruloid for the ith argument of context C′ then q′′′′i may evolve into any process q′i
such that q′′′′i

τ∗

=⇒ q′i and thus q′i may be any process such that qi
σiδi
=⇒ q′i . On the other hand, if there does not exist a

patience ruloid for the ith argument of context C′ then let q′i be q′′′′i , and thus q′i is any delay process of qi
σiδi
=⇒. �
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5.9 Refusal of Φ′

Though, as stated in the preceding subsection, not all q′′i can be equivalent to q′i , we can find a variant of µ, denoted

as µ′, such that (σµ′, µ′−1Φ′) ∈ I(C(q1, . . . , qn)). By this result, we can claim that, there always be some µ such that

(σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)), which will conclude the proof of Theorem 5.4.1 and thus Theorem 5.3.1, i.e., the meta

theorem.

In the following, we will provide a strategy to obtain a such µ′.

Strategy 5.9.1 Suppose that C(q1, . . . , qn)
σµ

=⇒, and (σiµi, µ
−1
i Φ′i) ∈ I(qi). Then, there must exist a δ′a ∈ Φ′ such that

µ is a prefix of δ′ and δ′ is not a proper prefix of any δ′′b ∈ Φ′. Let µ′ be δ′.

Proposition 5.9.1 Strategy 5.9.1 will always obtain some µ′.

Proof. By Section 5.7, we have that ε < µ−1Φ′. Therefore, µ should be a proper prefix of some δ′a in Φ′, and thus µ

should be a prefix of some δ′ such that there exists some δ′a ∈ Φ′.

Observe that, there may exist several δ′a ∈ Φ′ satisfying that µ is a prefix of δ′. Therefore, in these δ′a, there will

always exist some δ′a satisfies δ′ is not a proper prefix of any δ′′ with δ′′b ∈ Φ′ and µ is a prefix of δ′′. �

Proposition 5.9.2 Let µ′ be the one obtained by Strategy 5.9.1. We can conclude that ∀ν ∈ µ′−1Φ : |ν| = 1.

Proof. It can be easily obtained from the fact that δ′a ∈ Φ′, µ′ is δ′ and δ′ is not a proper prefix of some δ′′b ∈ Φ′. �

The following proposition provides a critical way to show that, if only the set of next observable actions are

concerned, then patience rules for non-active arguments are indeed not necessary.

Proposition 5.9.3 Let L = (Σ,Ψ) be an τDes-language, and C(x1, . . . , xn) be any context of n holes. Suppose that

ζ is any closed Σ-substitution mapping xi into pi. If the ith argument is not an active argument of C(x1, . . . , xn) and

pi
τ∗

−→ p′i , then T (C(p1, . . . , pi, . . . , pn), 1) = T (C(p1, . . . , p′i , . . . , pn), 1).

Proof. Without loss of generality, suppose that p = C(p1, . . . pi, . . . , pn) and q = C(p1, . . . , p′i , . . . , pn), where C is any

context of n holes in the language L. Let A1 = {a ∈ Act|p
a

=⇒} and A2 = {a ∈ Act|p
a

=⇒}. We need to prove A1 = A2.

Consider the next ruloid which will be applied.

If the next ruloid is a patience ruloid, then it should be a patience ruloid for active argument, since L is an τDes-

language. However, applying the patience ruloid will not produce observable actions for C(p1, . . . pi, . . . , pn) and

C(p1, . . . , p′i , . . . , pn). Because the ith argument is not an active argument, C(p1, . . . pi, . . . , p j, . . . , pn)
τ
−→ C(p1, . . . pi, . . . , p′j, . . . , pn)

and C(p1, . . . p′i , . . . , p j, . . . , pn)
τ
−→ C(p1, . . . p′i , . . . , p′j, . . . , pn) when the jth argument of context C is an active ar-

gument and p j
τ
−→ p′j. Now, it is enough to consider the set of next observable actions of C(p1, . . . pi, . . . , p′j, . . . , pn)

and C(p1, . . . p′i , . . . , p′j, . . . , pn).

If the next ruloid is a plain ruloid, then it should not be a ruloid with τ conclusion, since L is an τDes-language.

Suppose that the applied ruloid r is in form (3), then the ith argument is not in I since it is not an active argument.
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Therefore, by the soundness property of the ruloids, the pi will not be fired when applying the ruloid r. Furthermore,

since p and q are only different in pi and p′i , we have A1 = A2. �

Finally, we will show that, the obtained µ′ will make (σµ′, µ′−1Φ′) ∈ I(C(q1, . . . , qn)).

Proposition 5.9.4 (σµ′, µ′−1Φ′) ∈ I(C(q1, . . . , qn)).

Proof. First, we will show that σµ′ ∈ T (C(q1, . . . , qn)).

By Strategy 5.4.1, for all δ′a ∈ Φ′, δ′ ∈ T (C′(p′1, . . . , p′n)), where C(p1, . . . , pn)
σ

=⇒ C′(p′1, . . . , p′n). Then, by

Strategy 5.9.1, µ′ is some δ′ with δ′a ∈ Φ′. Therefore, µ′ ∈ T (C′(p′1, . . . , p′n)), and thus σµ′ ∈ T (C(p1, . . . , pn)).

Then, by Proposition 5.8.1, p1 vst q1 and pi ≡ qi, we have that σµ′ ∈ T (C(q1, . . . , qn)).

Second, we need to show that, there exists some C′′(q′′1 , . . . ., q
′′
n ) such that C(q1, . . . , qn)

σµ′

=⇒ C′′(q′′1 , . . . ., q
′′
n ) and

T (C′′(q′′1 , . . . ., q
′′
n )) ∩ µ′−1Φ′ = ∅.

By Strategy 5.9.1, µ is a prefix of µ′. Therefore, after decomposing σµ′, σiµi should be also a prefix of σiµ
′
i . Then,

by Proposition 5.6.3, (σiµ
′
i , µ
′−1
i Φ′i) is also a impossible future pair of subprocess qi.

By the definition of impossible future pair, (σiµ
′
i , µ
′−1
i Φ′i) ∈ I(qi) means that, there exists q′i such that qi

σiµ
′
i

=⇒ q′i
and T (q′i) ∩ µ

′−1
i Φ′i = ∅.

Composing σiµ
′
i using Proposition 5.8.1, we have that C(q1, . . . , qn)

σµ′

=⇒ C′′(q′′1 , . . . , q
′′
n ) for some context C′′ and

process C′′(q′′1 , . . . , q
′′
n ).

Like we have discussed at the beginning of Section 5.8, q′′i cannot always be safely equivalent to q′i , where qi
σiµ

′
i

=⇒ q′i
and T (q′i)∩ µ

′−1
i Φ′i = ∅. By Proposition 5.8.1, only when the ith argument of C′′ is active, can q′′i be safely equivalent

to q′i .

Fortunately, by Proposition 5.9.2, ∀ν ∈ µ′−1Φ : |ν| = 1, we need only consider the set of next observable actions of

C′′(q′′1 , . . . ., q
′′
n ). And by Proposition 5.9.3, the set of next actions of C′′(q′′1 , . . . , q

′′
n ) and C′′(q′1, . . . , q

′
n) are equivalent.

As a result, the set of next refused actions of them are also equivalent.

Now, by T (q′i) ∩ µ
′−1
i Φ′i = ∅, we have {a ∈ Act|q′i

a
=⇒} ⊆ Act − µ′−1

i Φ′i . On the other hand, by Strategy 5.5.1,

{a ∈ Act|∃p′′i : p′i
µ′i

=⇒ p′′i ∧ p′′i
a

=⇒}∪µ−1
i Φ′i = Act. Therefore, {a ∈ Act|q′i

a
=⇒} ⊆ {a ∈ Act|∃p′′i : p′i

µ′i
=⇒ p′′i ∧ p′′i

a
=⇒},

which will make C′′(q′1, . . . , q
′
n) ⊆ µ′−1T (C(p′1, . . . , p′n)).

Finally, by T (C(p′1, . . . , p′n)) ∩ Φ′ = ∅, we have T (C′′(q′1, . . . , q
′
n)) ∩ µ′−1Φ′ = ∅ and thus T (C′′(q′′1 , . . . , q

′′
n )) ∩

µ′−1Φ′ = ∅. �

5.10 Meta Theorem

In this subsection, we will make a review on the proof of meta theorem by providing a proof sketch. The formal proofs

of each steps have been shown in the previous subsections. For clarity, we copy the statement of meta theorem to here.

Theorem 5.10.1 Let L be a τDes-language and C be any context of n holes. ζ and ξ are two closed Σ-substitutions

mapping xi into pi and qi, respectively. If ∀1 ≤ i ≤ n : pi vst qi, then C(p1, . . . , pn) vst C(q1, . . . , qn).
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Proof Sketch.

1. By the definition of should testing preorder, it is equivalent to prove that if (σ,Φ) ∈ I(C(p1, . . . , pn)) then, there

exists some µ ∈ Act∗ such that (σµ, µ−1Φ) ∈ I(C(q1, . . . , qn)) and ε < µ−1Φ. By the transitivity of preorder

relation, it is further equivalent to assume that p1 vst q1 and ∀2 ≤ i ≤ n : pi ≡ qi, as stated in Theorem 5.3.2.

2. Theorem 5.3.2 holds if Theorem 5.4.1 holds. This is obtained by a strategy, i.e., Strategy 5.4.1, in which a

specific Φ′ is constructed. We show that if there exists some µ such that (σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)) then

we have (σµ, µ−1Φ) ∈ I(C(q1, . . . , qn)). With this result, the proof is reduced to find a specific µ satisfying that

(σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)), which is fulfilled in the following steps.

3. By Proposition 5.5.1 and Strategy 5.5.1, (σ,Φ′) can be decomposed into (σi,Φ
′
i). Proposition 5.5.2 shows that

(σi,Φ
′
i) ∈ I(pi).

4. By (σi,Φ
′
i) ∈ I(pi) and the definition of should testing preorder, there must exist some µi such that (σiµi, µ

−1
i Φ′i) ∈

I(pi). For the case of 2 ≤ i ≤ n, the hypothesis that ∀2 ≤ i ≤ n : pi ≡ qi implies that, µi can be any action

sequence satisfying ε < µ−1
i Φ′i .

5. Section 5.7 shows that, we can always find some σµ such that, after decomposing, we have the same σ1µ1 as the

above. Then, this σµ is proved in Section 5.8 to be a weak trace of C(q1, . . . , qn). However, we cannot ascertain

that this µ is the one we need to make (σµ, µ−1Φ′) ∈ I(C(q1, . . . , qn)), because patience rules for non-active

arguments are not necessary in τDes-languages.

6. In Section 5.9, we show that, there exists a µ′ such that µ is its prefix and (σµ′, µ′−1Φ′) ∈ I(C(q1, . . . , qn)). �

6 Applications

6.1 BPA

First, let’s examine BPA language [2], which is a simplified version of ACP language. The syntax of the BPA consists

of two operators: alternative composition + and sequential composition ·. Their transition rules are those in Table 2.

To meet weak equivalences, adding patience rules are rather necessary. An intuitive way is to substitute the a ∈ Act

with α ∈ Act ∪ {τ}. However, the rules produced by this way do not satisfy the τDes-format. The main problem is

presented in Table 3, which contains some rules for + operator after substituting a with τ. These rules are not patience

rules but have τ premises.

On the other hand, a simple counterexample is possible that the modified + operator is not invariant under should

testing preorder. Let p1 = p2 = a, q1 = τb and q2 = b. Then, p1 vst p2 and q1 vst q2. However, p1 + q1 @st p2 + q2,

since (∅, {b}) ∈ I(p1 + q1) but @µ ∈ {ε}∪ ↓ {b} − {b} : (µ, µ−1{b}) ∈ I(p2 + q2).

Generally, there are two ways in dealing with this problem.

26



Table 2: Operational rules for BPA operators (a ∈ Act) [2]

a
a
→
√

x
a
→ x′

x + y
a
→ x′

y
a
→ y′

x + y
a
→ y′

x
a
→
√

x + y
a
→
√

y
a
→
√

x + y
a
→
√

x
a
→ x′

x · y
a
→ x′ · y

x
a
→
√

x · y
a
→ y

Table 3: Not patience rules after substituting a with τ, but they have τ premises

x
τ
→ x′

x + y
τ
→ x′

y
τ
→ y′

x + y
τ
→ y′

x
τ
→
√

x + y
τ
→
√

y
τ
→
√

x + y
τ
→
√

The first one is to introduce a slightly finer preorder vc
st, which strengthen the original preorder vst with a stable

preorder vstable, i.e., vc
st=vst ∩ vstable. The stable preorder is defined as: p vstable q iff q

τ
9 =⇒ p

τ
9. This way has

been adopted by [7] for should testing preorder in a CCS-like language.

The second one is to adopt other operators to substitute the + operator. In fact, the internal choice operator

and external choice operator of the CSP language will be sound for this goal. More specifically, operators �,⊕,B of

language B are also used to substitute the + operator and the prefixing with τ. Using these operators, ap+bq, τap+τbp

and ap + τbq can be represented by ap � bq, ap ⊕ bp and ap B bq, respectively.

Note that, the right-hand-side argument of sequential composition operator · is neither an active argument nor a

receiving argument. Therefore, no patience rules are needed for it.

6.2 ACP

Table 5 lists the additional rules for the ACP language, besides those rules of BPA in Table 3. Fortunately, it can

be easily verified that, except for the left merge operator T, by substituting all a, b, c with τ, the added rules are all

patience rules.

The τ rule for the left merge operator is in form (5). We can see that, it is even not a patience rule. And we can

borrow a counterexample in paper [29] to show that the left merge operator is not compositional under should testing

preorder: p1 = τ · (τ · a + b) and p2 = τ · a + b are in should testing preorder relation, but p1Tc and p2Tc are not.

x
τ
→ x′

xTy
τ
→ x′||y

(5)
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Table 4: Additional rules for ACP operators (a, b, c ∈ Act) [2]

x
a
→ x′

x||y
a
→ x′||y

y
a
→ y′

x||y
a
→ x||y′

x
a
→ x
√

x||y
a
→ y

y
a
→
√

x||y
a
→ x

x
a
→ x′, y

b
→ y′

x||y
c
→ x′||y′

γ(a, b) = c x
a
→ x′, y

b
→
√

x||y
c
→ x′

γ(a, b) = c

x
a
→
√
, y

b
→ y′

x||y
c
→ y′

γ(a, b) = c x
a
→
√
, y

b
→
√

x||y
c
→
√ γ(a, b) = c

x
a
→ x′

xTy
c
→ x′||y

x
a
→
√

xTy
c
→ y

x
a
→ x′, y

b
→ y′

x|y
c
→ x′||y′

γ(a, b) = c x
a
→ x′, y

b
→
√

x|y
c
→ x′

γ(a, b) = c

x
a
→
√
, y

b
→ y′

x|y
c
→ y′

γ(a, b) = c x
a
→
√
, y

b
→
√

x|y
c
→
√ γ(a, b) = c

x
a
→ x′

ϑ(x)
c
→ ϑ(x′)

a < H x
a
→
√

ϑ(x)
c
→
√ a < H

Figure 4: Several decorated trace preorders and their precongruence formats

7 Comparison with Previous Works

Figure 4 makes a simple review on current work and our previous works in [15, 16]. In [15], three congruence

formats, i.e., weak 1-readiness format and weak ω-readiness format, are assigned to weak readiness equivalence and

weak possible future equivalence, respectively. In [16], two congruence formats, i.e, weak 1-failure format and weak

ω-failure format, are assigned to weak failure equivalence and weak impossible future equivalence, respectively. In

fact, weak 1-readiness format is the same as weak 1-failure format and weak ω-readiness format is the same as weak

ω-failure format.

The left graph in Figure 4 summarizes the different discrimination power of the above-mentioned weak equiv-

alences. For convenience, should testing equivalence is used instead of should testing preorder. The arrows in the

graph denote the ”coarser than” relations between two related weak equivalences. More specifically, should testing

equivalence is coarser than weak impossible future equivalence and is finer than weak failure equivalence.
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As a custom in the area of SOS, a coarser equivalence/preorder has a tighter congruence/precongruence format

[29]. Therefore, it is generally expected that τDes-format is tighter than weak ω-failure format and is looser than weak

1-failure format. The results in this paper and in [15, 16] justify this intuition in that, compared with τDes-format,

weak ω-failure format further needs patience rules for receiving arguments but weak 1-failure format should exclude

rules with τ-conclusion. The definition of rules with τ-conclusion are as follows.

Definition 7.0.1 [15, 16] LetL = (Σ,Ψ) be a de Simone language, and f be a function symbol in Σ. A rule of the form
H

f (x1, . . . , xn)
τ
−→ t

is called a rule with τ-conclusion, if it is not a patience rule and there exists at least one positive

Σ-literal in H.

The right graph in Figure 4 shows the above conclusion. The arrows denote the ”looser than” relations between

two related congruence/precongruence formats.

In our statements above, the ’tighter than’ relation requires that, format A is tighter than format B iff, for any

languages L = (Σ,Ψ) in format A, all transition rules in Ψ are also in format B. Note that, ’tighter than’ relation is not

the same as ’contained in’ relation, which requires that, format A is contained in format B iff, any language L = (Σ,Ψ)

in format A will also be in format B. It can be easily proved that, ’contained in’ relation implies ’tighter than’ relation,

but not vice versa. Indeed, the τDes format is tighter than the weak ω-failure format, but is not contained in the weak

ω-failure format.

8 Conclusions and Related Works

In the paper, we introduce a rule format for the should testing preorder to be precongruent. By the formal proof, we

have shown the correctness of our views. Also, we have given its applications on the ACP language.

As another direct application of τDes-format, we can prospect its practical use on designing a plausible specifica-

tion language for specifying and analyzing protocols. If the specification language is in the format, then two operations

can be done safely. The first is that we can substitute a subcomponent of the specification with another subcomponent

which is in preorder relation with the original subcomponent, and the obtained implementation is also in preorder rela-

tion with the specification. The second is that, for two set of processes which are in preorder relation correspondingly,

we can composite them randomly using the operators in the language, and the obtained two higher-level processes are

still in preorder relation.

As for the related works, we have noticed that equivalences/preorders in strong notion were paid more attentions

than equivalences/preorders in weak notion. In fact, almost all classical strong equivalences/preorders, e.g., strong

bisimulation and decorated trace preorders, have found their corresponding congruence/precongruence formats [1, 19].

However, less works have been done on the congruence/precongruence formats for weak equivalences/preorders.

As for the formats for weak bisimulation-like equivalences, [5] introduced congruence formats for (rooted) weak

bisimulation and (rooted) branching bisimulation, [9] proposed RBB safe format for rooted branching bisimulation
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which generalized the simple RBB cool format of [5] to the setting with negative premises and predicates. And

recently, [29] discussed the rule formats for the weak bisimulation, delay bisimulation, η-bisimulation and branching

bisimulation. On the other hand, with the way of ordered SOS, [24, 25, 26] proposed several formats and languages

for (rooted) branching bisimulation and (rooted) eager bisimulation.

As for the formats for testing-theoretical-based weak equivalences/preorders and weak decorated trace preorders,

[24] suggested τDes format, which is a subformat of ISOS format [23], to be a congruence format for testing equiv-

alence. The authors [15, 16] have proposed precongruence formats for weak readiness/failure equivalence and weak

possible/impossible future equivalence. But prior to this work, no rule formats have been presented to be a precongru-

ence format for the should testing preorder.

Recently, another proof technique on congruence/precongruence formats based on decomposing of the subclass of

modal formulas for some given equivalences/preorders have been studied [6, 10, 11]. Within their works, (bi)simulation-

like equivalences and (strong) decorated trace preorders have found their corresponding congruence/precongruence

formats. These formats are subformats of ready simulation format, i.e., ntyft/ntyxt format without lookahead. How-

ever, the problem whether this proof technique can be fitted into our works aiming at should testing preorder is still

open.
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