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Abstract
The paper identifies a special case in which the complex prob-
lem of synthesis from specifications in temporal-epistemic
logic can be reduced to the simpler problem of model check-
ing such specifications. An application is given of strategy
synthesis in pursuit-evasion games, where one or more pur-
suers with incomplete information aim to discover the exis-
tence of an evader. Experimental results are provided to eval-
uate the feasibility of the approach.

Introduction
Epistemic model checking is a formal method in which one
automatically verifies whether a system in which agents
have incomplete information satisfies a specification in the
logic of knowledge and time. In this paper, we show that in
some circumstances, epistemic model checking can provide
not just a technology with which to verify agent behaviours,
but also a technology for synthesizing such behaviours. In
synthesis, one starts with a specification, as well as the con-
text in which it is to be satisfied, and one is interested in
finding a strategy, i.e., a pattern of behavior of the agents,
that makes the specification true.

The synthesis problem for temporal-epistemic specifi-
cations is quite hard: double-exponential time for a sin-
gle agent, and generally undecidable for multiple agents
(van der Meyden and Vardi 1998). The known synthesis
algorithms generally require complex automaton theoretic
constructions, and as yet, there exist no implementations of
these algorithms. The special case of synthesis we consider
in this paper, however, turns out to be significantly simpler.
We show that techniques for counter-example construction
already implemented in the epistemic model checker MCK
suffice for the synthesis with respect to certain types of spec-
ification in a special class of environments.

We illustrate the result by applying it in the setting of
Pursuit-Evasion games, which are a type of multi-player
game in which one or more pursuers have the objective of
identifying the presence of one or more evaders, and of cap-
turing them. Solutions to pursuit-evasion problems have
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multiple applications, including air and naval combat, ship
navigation, (Isaacs 1965), automatic car collision avoidance
systems (Lachner, Breitner, and Pesch 2000), air traffic con-
trol, and unmanned aerial vehicle control (Vidal et al. 2002).
It has been argued by (Huang, Maupin, and van der Mey-
den 2011) that in settings where agents have incomplete
information concerning the game state, temporal-epistemic
goals, which concern how the knowledge of agents evolves
over time, become relevant to the analysis of pursuit-evasion
scenarios. We show that our result can be used to solve a
strategy synthesis problem arising from one such goal, con-
cerned with region clearing, i.e., determining whether an
evader is present. To evaluate the approach, we carry out
some experiments using the technique in which the game
is played on a variety of types of graph: a class of random
graphs and a class of graphs in the form of a Manhattan grid
with holes.

Epistemic Model Checking
Model checking (Clarke, Grumberg, and Peled 1999) is a
formal verification method, based on automated computa-
tions that determine whether a specification holds in a model
representing the system to be verified. Model checking is
traditionally based on specifications expressed in temporal
logic, but a number of model checkers, e.g., MCK (Gam-
mie and van der Meyden 2004), MCMAS (Lomuscio, Qu,
and Raimondi 2009), VerICS(Kacprzak et al. 2008), DEMO
(Eijck 2004) and MCTK (Su, Sattar, and Luo 2007) now
also support epistemic operators, which deal with properties
of agents’ knowledge (Fagin et al. 1995).

In this paper we apply the epistemic model checker MCK.
MCK has a rich range of modal operators. The fragment we
need in this paper is based on the following grammar:

� = p | �1 ^ �2 | ¬� | X� | G� | Ki�

where p is an atomic proposition from the set Prop, and i is
an element of the set of agents Agt. Intuitively, X� means
that � holds at the next moment of time, G� means that �
holds now and at all future times, and Ki� means that agent
i knows that � is true. Another useful definable operator is
F� = ¬G¬� (� holds at some future time).

The logic can be given a semantics using interpreted sys-
tems (Fagin et al. 1995), which are pairs I = (R, ⇡), where R
is a set of runs, describing how the system evolves over time,
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and ⇡ : R ⇥ N! P(Prop) is an interpretation function, that
indicates which atomic propositions are true at each point
of the system, represented by a pair (r, n) where r 2 R is
a run and n 2 N is a natural number representing a time.
More concretely, each run r 2 R is represented as a function
r : N! S ⇥⇧i2AgtLi, where S is a set, representing the pos-
sible states of the environment in which the agents operate,
and where each Li is a set, representing the possible local
states of agent i. Given a run r, agent i and time m, we write
ri(m) for the i+1-st component (in Li) of r(m), and re(m) for
the first component (in S ).

The semantics of the language is given by a relation
I, (r,m) |= �, where I is an intepreted system, (r,m) is a
point of I, and � is a formula, defined inductively as fol-
lows (the obvious cases for boolean operators are omitted):
• I, (r,m) |= p if p 2 ⇡(r,m),
• I, (r,m) |= X� if I, (r,m + 1) |= �,
• I, (r,m) |= G� if for all m0 � m we have I, (r,m0) |= �,
• I, (r,m) |= Ki� if for all points (r0,m0) of I such that

ri(m) = r0i (m
0) we have I, (r0,m0) |= �.

We write I |= � if I, (r, 0) |= � for all runs r of I, i.e., the
formula holds at time zero in all runs.

In model checking, the system to be verified is generally
given in the form of (a program representing) a finite state
transition system. We will view this system as composed of
two parts: an environment E and a joint protocol P for the
agents. Environments describe how the state of the system
changes in response to agent actions, and protocols describe
how the agents choose their actions in response to observa-
tions of the environment.

Environments have the form E = (S , S 0, ⌧, {Oi}i2Agt, ⇡E),
where S is a set of states, S 0 is the set of possible initial
states, ⌧ : S ⇥ Act ! P(S ) represents how the state of
the system changes (nondeterministically) in response to ac-
tions performed by the agents, component Oi : S ! O is
a function that represents the observation made by agent i
in each state (here O is the set of all possible observations),
and ⇡E : S ! P(Prop) interprets atomic propositions at the
states. More concretely, the set Act = ⇧i2AgtActi is a set of
tuples, with each set Acti representing the actions performed
by agent i. We write s

a�! t if t 2 ⌧(s, a), for a 2 Act.
We write E, s |= p if p 2 ⇡E(s), and extend this to Boolean
combinations of atomic propositions in the usual way.

A protocol for agent i is a mapping Pi : O⇤ ! P(Acti),
mapping each sequence of observations that can be made
by the agent to a set of actions that the agent may choose
to perform after making that sequence of observations. A
joint protocol is a collection P = {Pi}i2Agt where each Pi is a
protocol for agent i.

Given an environment E, and a joint protocol P, we may
construct an interpreted system that represents all the possi-
ble runs of E when agents choose their actions according to
the protocol P. In doing so, we also need to define how the
local states of agents are determined, which in turn impacts
what the agents know. MCK provides several different ways
to define the local states. We work in this paper with the syn-
chronous perfect recall assignment of local states, in which

the local state is the sequence of all observations that has
been made by the agent. We denote the system constructed
from E and P under this assignment by Ispr(E, P) = (R, ⇡),
defined by taking each Li = O⇤ and taking R to be the set of
runs r : N! S ⇥ ⇧i2AgtLi such that

1. re(0) 2 S 0,
2. for all n 2 N, we have ri(n) = Oi(re(0)) . . .Oi(re(n)), and
3. for all n 2 N, there exists a joint action a with ai 2

Pi(ri(n)) for each agent i, and re(n)
a�! re(n + 1).

The assignment ⇡ : R ⇥ N ! P(Prop) is obtained from the
assignment ⇡E of E by defining ⇡(r, n) = ⇡E(re(n)). Runs as
defined above do not record the action chosen at each step:
to avoid complicating the definitions we assume that these
are recorded in the environment state, so that there exists a
function f : S ! Act such that if s

a�! t then f (t) = a.
The model checking problem solved by MCK is the fol-

lowing: given an environment E, a joint protocol P and a
formula �, determine if Ispr(E, P) |= �. For this to be fea-
sible, we need some further assumptions: first, the set of
states of E needs to be finite, the protocol P also needs to
be represented in a finite state way, and some restrictions
on the formula are required. For finite state representation
of the protocol, we may assume that the environment has
been defined so that the protocol depends only on the fi-
nal observation, i.e. for each agent i there exists a function
fi : O! P(Acti) such that Pi(o0 . . . on) = fi(on).

We concentrate in this paper on two types of formula for
which MCK supports model checking with respect to the
synchronous perfect recall semantics: formulas G� where �
is a formula in which the only modal operator is Ki for a
fixed agent i, and formulas of the form Xn�, with the same
restriction on �. MCK model checks formulas of the form
G� by computing a “belief space” transition system in which
states correspond to sets of states consistent with the agent’s
observations, and represents these sets as binary decision di-
agrams (Bryant 1986). (This algorithm is closely related to
approaches that have been used in planning under partial ob-
servability using BDD representations (Bertoli et al. 2006).)
For formulas of the form Xn�, all knowledge states possible
at time n are represented in a single binary decision diagram,
constructed using an algorithm described in (van der Mey-
den and Su 2004).

For both types of formula, MCK is able to return a
counter-example when the formula does not hold. The
counter-example is in the form of a run prefix ⇢ =
r(0) . . . r(k) such that for all runs r extending ⇢, we have
Ispr(M, P), (r, k) |= ¬�. (In case of the formula Xn� we have
k = n.) We make critical use of this capability in this paper.

A problem related to model checking is the synthesis
problem: given an environment E and a formula �, find a
protocol P such that Ispr(E, P) |= � (or determine that no
such protocol exists). This is a significantly more compli-
cated problem than model checking: in general, it is unde-
cidable, and double exponential time complete for environ-
ments with a single agent (van der Meyden and Vardi 1998).
One of our contributions in this paper is to identify a case
where this more complicated problem can be reduced to the
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simpler problem of model checking. (In both cases, there
may be exponentially many possible states of knowledge as
a function of the number of states of the underlying system,
which in turn may be exponential in the number of variables
used in its programmatic representation, so the algorithms
are dealing with an inherently complex problem and are not
guaranteed to work efficiently. However, they have been
found to be useful in a range of interesting problems.)

A Result on Epistemic Synthesis
We now present a general result on epistemic synthesis, that
shows how the counter-examples produced by an epistemic
model checker can, in some circumstances, be used to solve
a synthesis problem. Formulation of the result requires a
number of technical definitions. In what follows, E is an
environment with a single agent i.

Say that a proposition ↵ is bi-stable in E if for states s, s0

such that s
a�! s0 for some a, we have E, s |= ↵ iff E, s0 |= ↵.

Thus, if ↵ is true, it remains true for the rest of time, and
similarly, if ↵ is false, then it remains so.

Say that agent i has a unique initial observation under
condition ↵ in E if for all initial states s, s0 of E with E, s |= ↵
and E, s0 |= ↵ we have Oi(s) = Oi(s0).

Say that agent i’s observations are deterministic under
condition ↵ if for all states s1, s2, t1, t2 of E and actions a
of agent i, if E, s1 |= ↵, and E, s2 |= ↵ and Oi(s1) = Oi(s2)
and s1

a�! t1 and s2
a�! t2 then Oi(t1) = Oi(t2). Intuitively,

this says that under condition ↵, the agent’s next observation
can be uniquely determined from its current observation and
the action that it is performing.

Say that agent i’s observations are action-recording if for
all states s1, s2, t1, t2 and actions a, b of agent i, if Oi(s1) =
Oi(s2) and s1

a�! t1 and s2
b�! t2 and Oi(t1) = Oi(t2) then

a = b. Intuitively, this means that the most recent action per-
formed by the agent can be deduced from its observations.

Define the protocol Prand to be the protocol that allows the
agent to choose any of its actions at any time. That is, for all
sequences � of observations, Prand(�) = Acti, the set of all
actions of the agent.

The formula F((Ki↵) _ Ki¬↵) states that the agent even-
tually learns whether the proposition ↵ is true or false. The
following result states that to synthesize a protocol for this
specification in environments satisfying the above condi-
tions, it suffices to find a counter-example to model check-
ing another specification with respect to the specific protocol
Prand. This reduces the more complex synthesis problem to
a simpler model checking problem.

Theorem 1 Let the environment E have the single agent i.
Suppose that agent i has a unique initial observation in E.
Let ↵ be a bistable proposition in E, nontrivial in the sense
that there exist initial states satisfying ↵, and suppose that
agent i’s observations are action-recording and determinis-
tic under condition ↵. Then the following are equivalent:

• there exists a protocol P for agent i such that Ispr(E, P) |=
F((Ki↵) _ Ki¬↵)

• not Ispr(E, Prand) |= G(¬Ki↵).

Proof: Assume first that not Ispr(E, Prand) |= G(¬Ki↵).
We show that there exists a protocol P for agent i such
that Ispr(E, P) |= F((Ki↵) _ Ki¬↵). By assumption,
there exists a point (r⇤, n) of Ispr(E, Prand) such that
Ispr(E, Prand), (r⇤, n) |= Ki↵. By validity of (Ki↵) ) ↵ and
bistability, we have E, r⇤(k) |= ↵ for all k. In particular,
E, r⇤(0) |= ↵. Define the protocol P to be the (determinis-
tic) protocol with P(o0 . . . ok) = {ak} where ak is the action
taken by r in run r⇤ at time k. We claim that Ispr(E, P) |=
F((Ki↵) _ Ki¬↵). For, let r be any run of Ispr(E, P). We
consider two cases: E, r(0) |= ↵ and E, r(0) |= ¬↵.

Assume first that E, r(0) |= ↵. We show that in this
case Ispr(E, P), (r, n) |= Ki↵. We first claim that ri(k) =
r⇤i (k) for all k  n. This can be seen by induction. The
base case follows from the assumption that agent i has
a unique initial observation under condition ↵, since both
E, r(0) |= ↵ and E, r⇤(0) |= ↵, so we have ri(0) = Oi(r(0)) =
Oi(r⇤(0)) = r⇤i (0). Inductively, if, for k < n, we have
ri(k) = r⇤i (k), then since, in the perfect recall semantics,
each of these local states is a sequence of observations,
we have Oi(r(k)) = Oi(r⇤(k)). Moreover, by bistability we
have that E, r(k) |= ↵ and E, r⇤(k) |= ↵. Since r is a run
of P, the same action a is taken in the runs r and r⇤ at
time k. Thus r(k)

a�! r(k + 1) and r⇤(k)
a�! r⇤(k + 1).

Since agent i’s observations are deterministic under condi-
tion ↵ we obtain that Oi(r(k + 1)) = Oi(r⇤(k + 1)). Hence
ri(k+1) = ri(k) ·Oi(r(k+1)) = r⇤i (k) ·Oi(r⇤(k+1)) = r⇤i (k+1).
This completes the proof of the claim.

Suppose now that r0 is a run of Ispr(E, P) with (r, n) ⇠i
(r0, n). Then r0 is also a run of Ispr(E, Prand) and r0i (n) =
ri(n) = r⇤i (n). Since we have Ispr(E, Prand), (r⇤, n) |=
Ki↵, we must have E, r0i (n) |= ↵. This shows that
Ispr(E, P), (r, n) |= Ki↵.

Alternatively, suppose that E, r(0) |= ¬↵. By bistability,
we have E, r(n) |= ¬↵. Since r is also a run of Ispr(E, Prand)
and Ispr(E, Prand), (r⇤, n) |= Ki↵, we cannot have ri(n) =
r⇤i (n). But we showed above that for all runs r0 of Ispr(E, P)
with E, r0(0) |= ↵, we have r0i (n) = r⇤i (n). Thus, for all runs r0
of Ispr(E, P) with r0i (n) = ri(n), we must have E, r0(0) |= ¬↵,
and indeed E, r0(n) |= ¬↵ by bistability. This shows that
Ispr(E, P), (r, n) |= Ki¬↵.

Thus, in either case we have Ispr(E, P), (r, n) |= (Ki↵) _
Ki¬↵ for all runs r of Ispr(E, P), so Ispr(E, P) |= F((Ki↵)_
Ki¬↵).

Conversely, assume that Ispr(E, Prand) |= G(↵ ) ¬Ki↵).
We show that there does not exists a protocol P for
agent i such that Ispr(E, P) |= F((Ki↵) _ Ki¬↵). By
way of contradiction, suppose that there is such a pro-
tocol. Applying nontriviality of ↵, let r be any run of
Ispr(E, P) with E, r(0) |= ↵. Then for some n we have
Ispr(E, P), (r, n) |= (Ki↵) _ Ki¬↵. By bistability, we have
E, r(n) |= ↵, so we cannot have the latter disjunct, and
we in fact have Ispr(E, P), (r, n) |= Ki↵. Note that r is
also a run of Ispr(E, Prand). Consider any other run r0 of
Ispr(E, Prand) with r0i (n) = ri(n). Then the sequence of
observations of agent i to time n are the same in the two
runs r and r0, as are the local states ri(k) and r0i (k) for
k  n. Since agent i’s observations are action-recording,
it follows that the same actions are performed in r and r0
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Figure 1: Structure of Ispr(E, Prand)

to time k, so that r0 satisfies all the conditions for being
a run of protocol P, up to at least time n. By varying
just the actions after time n, we may construct a run r00
of P that is identical to r0 up to time n. In particular, we
have r00i (n) = ri(n), so from Ispr(E, P), (r, n) |= Ki↵ we
obtain that Ispr(E, P), (r00, n) |= ↵, i.e., E, r00(n) |= ↵. Since
r00(n) = r0(n), we in fact have E, r0(n) |= ↵. This shows that
Ispr(E, Prand), (r, n) |= Ki↵. But this is a contradiction with
the assumption that Ispr(E, Prand) |= G(¬Ki↵).

Figure 1 illustrates the structure of the knowledge states
in the system Ispr(E, Prand) that the theorem exploits. A
counter-example to the specification

G(¬Ki↵) (1)

of the form that MCK returns, when this formula is not
valid in the system Ispr(E, Prand), would have the form
of a sequence of states re(0) . . . re(n) from a run r where
Ispr(E, Prand)(r, k) |= ¬Ki↵ ^ ¬Ki¬↵ for k < n, and
Ispr(E, Prand)(r, n) |= Ki↵. Performing the action at time
k may result in several different observations, but at most
one leaves the agent uncertain as to ↵, the rest give the agent
the information that ¬↵. The protocol P synthesized simply
follows the actions performed in the run r up to time n (and
can then behave arbitrarily.) Thus, the protocol P is easily
constructed from the counter-example returned by MCK. In-
deed, the same would apply when the formula Xn(¬Ki↵) is
not valid: again, the counter-example returned by MCK can
be used to construct the protocol P. We therefore have an
alternate way to obtain P: check

Xn(¬Ki↵) (2)

for increasing values of n until this formula is found to be
invalid. This enables us to construct P in a way that guaran-
tees it uses a minimal length sequence of actions: the model
checking proves that all shorter protocols fail to solve the
problem. So we get not just a solution to the problem, but
also a solution that is optimal in the time take to make a deci-
sion about the truth of ↵. We note that, in the worst case, the
solution may lie at depth of the order of 2|S | steps, where |S |
is the number of states of the environment, since potentially
we need to traverse that many different states of knowledge.

Pursuit-Evasion Games
To illustrate the application of the result of the previous sec-
tion, we focus for the remainder of the paper on pursuit-
evasion games, a type of multi-player game with incomplete
information. The agents in these games consist of a number

of pursuers, who seek to discover and intercept a number of
evaders. We focus on the discovery part of the game.

We define a general framework for these games in this
section. Specifically, the pursuit-evasion games we consider
are discrete games in which the agents have limited visi-
bility, but have complete knowledge of the map, which is
represented as a graph. The players are able to move to an
adjacent node in each step.

More precisely, each game is played on a map M =
(V, Em, Ev) where V is a set of vertices (or positions), Em ✓
V ⇥ V is a set of adjacency edges, along which players can
move, and Ev ✓ V ⇥ V is a set of edges indicating visibility:
a pursuer at position u can see the evader at position v just
in case (u, v) 2 Ev. All our examples use undirected graphs,
so that both relations Em, Ev are symmetric. We also assume
that Em is reflexive, so that staying at the same location is a
valid move.

A game is given by a tuple G = (M, AP, AE , I, sched, v),
where M is a map, AP is the set of pursuers, AE is the set
of evaders, I is a set of initial game states on M, and sched
is a scheduler, and v 2 N [ {1} gives a maximal velocity
for the evaders. We confine ourselves to games with a single
evader, so that AE = {e} – it can be shown that this is without
loss of generality for the problem we consider.

A scheduler is represented by a tuple sched = (⌃,�0, ✏, µ)
where ⌃ is a set of scheduler states, �0 2 ⌃ is the initial state
of the sheduler, ✏ : ⌃ ! P(AP [ AE) is a function repre-
senting the set of agents enabled to move by each scheduler
state, and µ : ⌃ ! ⌃ captures how the scheduler state is
updated at each step of the game. (Since this is independent
of players’ actions, we have just one fixed schedule that is
common to all runs.) We consider two types of schedulers.
The synchronous scheduler enables all players at all moves,
and a turn-based scheduler alternates scheduling of all pur-
suers with scheduling of all evaders. We discuss the winning
condition of the game below.

A game state for the game played on a map M =
(V, Em, Ev) by pursuers AP and evaders AE consists of a tuple
(posn,�), where posn : AP[AE ! V is a function giving the
location of each pursuer and evader, and� 2 ⌃ is a scheduler
state. For initial states in I we require that � = �0.

Given a game G, we obtain an environment EG with states
consisting of the set of game states of G, and initial states
equal to I. To enable application of Theorem 1, the environ-
ment has a single agent p, representing the set of pursuers
AP aggregated into one, and we model the evader as part
of the environment rather than as a separate agent. More
precisely, we define the observation Op(s) of the pursuers p
at the state s = (posn,�) to be the tuple (posn⇤,�), where
posn⇤(b) = posn(b) if player b is a pursuer, and for the case
where b is equal to the evader e, we have posn⇤(e) = posn(e)
if the evader is visible from some pursuer’s position, i,.e.,
(posn(a), posn(e)) 2 Ev for some a 2 AP, and posn⇤(e) = ?
otherwise, indicating an unknown position.

The set of actions of the pursuers is defined to be the set
of functions m : AP ! V , with m(b) representing the ver-
tex to which pursuer b wishes to move. The desired move
is effective only if the pursuer is scheduled and vertex m(b)
is adjacent to b’s current position. More precisely, we have
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Figure 2: Gates

(posn0,�0) 2 ⌧((posn,�),m) when the following hold. First,
the scheduler state is correctly updated, i.e., �0 = µ(�).
Next, for all unscheduled agents b < ✏(�) and for all pur-
suers b requesting an illegal move m(b), there is no change
of position, i.e., we have posn0(b) = posn(b). A move m(b)
is illegal just in case (posn(b),m(b)) < Em. Next, pursuers
requesting a legal move when they are enabled are allowed
to make that move, i.e., if b 2 ✏(�) and (posn(b),m(b)) 2 Em
then posn0(b) = m(b). Finally, the evader, if scheduled,
moves consistently with its maximal velocity v, but in such
a way as to avoid passing through pursuer positions. More
precisely, if e 2 ✏(�) and the evader has maximum velocity
v, then there is a sequence of positions p0, . . . , pk with k  v
such that (p j, p j+1) 2 Em for j = 0..k � 1, no p j is equal to
posn(b) for any pursuer b (unless already posn(e) = posn(b)
for some pursuer b), and posn0(e) = pk. In all other cases we
have posn0(e) = posn(e).

The only propositions of interest in our application will
be the propositions “pose 2 X” where X ✓ V is a set of game
positions. The assignment ⇡ of the environment will make
this true at a state (posn,�) just in case posn(e) 2 X.

In particular, we will consider just the case that X is a con-
nected component of the graph (V, Em). It is easily seen that
this makes the proposition pose 2 X bistable in the environ-
ment EG. Moreover, it can also be seen from the definition of
the state transitions and the observation function that agent
p’s observations are action-recording, and that if all pursuers
are located in the component X in all states, then agent p’s
observations are deterministic under condition pose < X. To
obtain that agent p has a unique initial observation under
condition pose < X, it suffices for each pursuer to start at a
fixed position in all initial states.

This then means that Theorem 1 applies with ↵ = pose <
X. Consequently, we may solve the problem of syn-
thesizing a (joint) pursuer strategy satisfying the formula
F(Kp(pose < X)_Kp(pose 2 X)) by model checking the for-
mula G(¬Kp(pose < X)). Note that the formula F(Kp(pose <
X) _ Kp(pose 2 X)) expresses that the pursuers are guaran-
teed to eventually learn whether or not the evader is in the
connected component X. This is precisely the question of
region clearing.

An Example
Figure 2 shows a map “Gates” from (Gerkey, Thrun, and
Gordon 2006). This graph has 32 nodes and 35 edges. To
model that the evader is outside of the scenario, we add an
extra disconnected vertex 0.

We have constructed an MCK model in which the pur-
suers all start from node 1 and have local visibility, that
is, each one can observe its current node and any adjacent
nodes. The initial position of the evader may be any node,
including the node 0 that is outside the scenario. We use
the synchronous scheduler and assume that the evader has
unit velocity, that is, in a round, it can only traverse a single
edge. (The pursuers always have unit velocity.) The effect
of the general description above is so that the evader strategy
is to move randomly. The pursuers are allowed to move to
adjacent nodes.

We utilize the synthesis theory above and the MCK model
checker to discovery an optimal strategy, in terms of the
number of pursuers and the search length, to clear the map.
First, we use MCK’s spr g algorithm to work on the game
of one pursuer and the formula (1) with ↵ = pose < X, where
X = {1..32}. MCK returns True in 1.1 seconds, which means
that there is no successful strategy for a single pursuer.1

Second, we use the spr xn algorithm to work on the
game of 2 pursuers and the formula (2). As we increase the
search length parameter n in this formula, the MCK finds
a counterexample at minimal length 10, in 4807 seconds.
The successful strategy derived from the counter-example is
(1, 1)! (2, 31)! (28, 6)! (27, 7)! (25, 8)! (24, 9)!
(23, 8) ! (20, 12) ! (18, 13) ! (16, 15), where a pair
(x, y) denotes the positions of two pursuers at a specific time.
If the pursuers see the evader while executing this strategy,
they know that the evader is present, otherwise, at the end of
this path, they know that there is no evader in the region X
(and the evader must be at the dummy position 0). Note that
the computation does more than find this solution: it also
establishes that the minimal number of pursuers is two, and
that there is no shorter strategy using two pursuers.

Performance in Two Classes of Problems
For some information on how our approach scales, we have
conducted experiments on two classes of game models. The
class of connected random graphs Grand(n,m) is generated
using two parameters: the number of nodes n and the num-
ber of edges m. In our experiments the random graphs are
generated by the routine gnm random graph from the
software networkx (http://networkx.lanl.gov/).
To make sure that a graph is connected, we set up an itera-
tion process to ignore all non-connected graphs and keep the
first connected one. All game settings for Grand(n,m) follow
the Gates example, i.e., visibility is of adjacent nodes, and
the scheduler is synchronous. The second class of graphs
Ggrid(n,m, l) are in the form of Manhattan Grids of size n⇥n
with m randomly generated holes, each of which has a size
of at most l ⇥ l. Figure 6 gives an example of a grid of

1Our experiments were conducted on a Ubuntu Linux system
(3.06GHz Intel Core i3 with 4G memory). Each process is allo-
cated up to 500M memory.
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Figure 3: Computation time ver-
sus search depth in Grand(32, 35),
evader speed 1.

Figure 4: Computation time versus
n in Grand(n,m), n + m = 300. 1
pursuer.

Figure 5: Computation time versus
grid dimension n in Ggrid(n, 2, 1).

Figure 6: A Manhattan grid with holes

size 6x6 with three holes of size at most 3x3, i.e., a graph
in Ggrid(6, 3, 3). In the games on these graphs, we use the
turn-based scheduler, and pursuers visibility is such that all
nodes along straight lines from the pursuers position are vis-
ible, except when a hole blocks the view. In both types of
games the evader has velocity 1.

The computation times we report are for deciding the
existence of a valid strategy by model checking the corre-
sponding formula. Construction of the counterexample af-
ter a specification has been determined to fail requires ad-
ditional time, generally about double the model checking
computation time. In general, the rate of growth in the
computation time in our experiments is exponential, so we
plot log base 2 of the computation time (in seconds), and
a straight line in the diagram would indicate exponential
growth. To keep the total cost of the experiments within rea-
sonable bounds, we have generally scaled the experiments
to the extent possible up to a maximal computation time of
around 216 seconds, i.e., roughly 10 hours.

As noted above, the number of possible states of knowl-
edge of the pursuer agent p is potentially exponential: it may
also scale exponentially in the depth n of the search path.
One response to this complexity is to increase the number
of pursuers, with the expectation of obtaining a shorter solu-
tion in this case. Figure 3 shows the performance of model

checking the Xn� formula as we increase n and the number
of pursuers, working on random graphs of size 32 nodes and
35 edges. While we are able to handle significant search
depths (as large as 30) for a single pursuer, there is a rapid
blowup as we add pursuers, leading to a significant decrease
in the search depth that can be handled efficiently. We would
like to perform additional experiments to determine if this is
because of inherent complexity of the problem or inefficien-
cies of the model checker.

We have been able to handle random graphs Grand(n,m)
with n + m as large as 300 vertices plus edges within very
reasonable time bounds. Figure 4 plots the performance of
the two model checking algorithms given a fixed size graph
(number of nodes plus number of edges = 300) as we vary
the number of nodes. Since the two algorithms solve dif-
ferent problems, for a more balanced comparison we also
plot a restriction Gn� of the G� algorithm that applies the
same approach with a maximal path length of n. The game
has one pursuer. For the Xn� algorithm, we assume a length
10 search strategy. We can see that both synthesis methods
work efficiently in checking the existence of a pursuer strat-
egy, taking less than 2 minutes to work on graphs of size
300.

Figure 5 shows the performance of the two algorithms on
the games played on Ggrid(n, 2, 1). In this case, the G� algo-
rithm scales poorly, but the Xn� algorithm is able to handle
moderate size grids for 1 or 2 pursuers.

Conclusion
A number of authors have considered similar pursuit-
evasion problems, with an emphasis on heuristic ap-
proaches to synthesis of a strategy (Hollinger, Kehagias, and
Singh 2010; Gerkey, Thrun, and Gordon 2006; Kehagias,
Hollinger, and Singh 2009). In general these approaches are
more efficient than ours, but we have not provided a detailed
comparison because we solve a different problem: we are
able to decide the existence of a strategy (or one of a given
length), whereas the heuristic approaches are generally in-
complete.
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Synthesizing strategies by adapting model checking al-
gorithms has been explored for temporal goals in fully-
observable systems (Giunchiglia and Traverso 1999; Pis-
tore and Traverso 2001) and partially-observable systems
(Bertoli et al. 2006). MCK’s algorithm for the perfect re-
call G� case is closely related to that used in (Bertoli et al.
2006). Given the performance results comparing this with
the Xn� approach, an interesting topic for future research is
to conduct a deeper comparison on other planning problems.

Another related line of work is based on alternating tem-
poral logic ATL (Alur, Henzinger, and Kupferman 2002),
which has been extended to epistemic variants, e.g., ATEL
(van der Hoek and Wooldridge 2003). ATEL-based ap-
proaches have formed the basis for work on planning
(van der Hoek and Wooldridge 2002; Jamroga 2004). How-
ever, work in this area has generally not been based on the
perfect recall semantics for knowledge that we use in this
paper.

We have shown one case where temporal-epistemic syn-
thesis can be reduced to model checking. It would be in-
teresting to find other such examples. Our result exploits
the linear nature of the counter-examples returned by MCK,
but one can envisage generalisations to tree-like counter-
examples. MCK also has a bounded model checking al-
gorithm for the synchronous perfect recall semantics, but it
cannot be applied to the formula we use in this paper because
the knowledge operator in the formula occurs in negative
form. We believe that the problems in this paper constitute
an interesting set of challenge problems for the epistemic
model checking field.
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