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Outline 2

—

Motivations: What does AI Safety constitute?

Certification Framework — F.E.V.E.R.
Falsification (through e.g., attacks, testing)
Explanation
Verification
Enhancement (through e.g., training, regularisation, and randomisation)
Reliability (through e.g., assessment, monitoring, and assurance)

Conclusions

Looking Ahead
Distributed /Federated learning
Foundation Models
Energy Efficiency
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Motivations: What does AI Safety constitute?
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A Learning-Enabled Vehicle Tracking System 4
—

» trained on WPAFB 2009 dataset [11]: The images were taken by a camera system
with six optical sensors that had already been stitched to cover a wide area of
around 35km?2. Image size: 12,000x10,000. The frame rate is 1.25Hz.
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Figure: (a) The architecture of the vehicle detector. (b) Workflow for testing the WAMI
tracking system.

[40] Reliability Validation of Learning Enabled Vehicle Tracking. ICRA2020
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Safety of Learning Enabled Vehicle Tracking 5
I —

Figure: Original detected tracks Figure: Distorted tracks

[40] Reliability Validation of Learning Enabled Vehicle Tracking. ICRA2020
UNIVERSITY OF
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Practical Verification of Vehicle Tracking System 6
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(a) Heuristic search (b) Verification (c) Enumeration of all possible Tracks

[24] Practical Verification of Neural Network Enabled State Estimation System for Robotics.
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Verification of Robustness and Resilience 7

—

P robustness: consistently deliver its
'expected’ functionality, even in
the presence of disturbances to the
input.

» resilience: withstand and recover
from challenging conditions, which
may involve internal failures and
external shocks.

[23] Formal verification of robustness and re- S / \L / 15 / \

silience of learning-enabled state estimation sys- . | . | |
tems for robotics. Neurocomputing, 2024. o] S M
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Underwater Vehicle 8

—

» Scenario: https://youtu.be/akY8f5sSFpY7t=13
» simulation / testing: https://youtu.be/akY8f5sSFpY?t=155
> verification: https://youtu.be/WNjUP_qL6W47t=475

UNIVERSITY OF
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https://youtu.be/akY8f5sSFpY?t=13
https://youtu.be/akY8f5sSFpY?t=155 
https://youtu.be/WNjUP_qL6W4?t=475

Underwater Vehicle 9

—

e * 6 simulated objects per mission: pipe, barrel, dock-cage, etc. Statistical testing based
The AUV mission multed objects per mision: g, ar = g

. ints and docking. :
St g Scene 2:
* The mission is subject to dynamic noise factors. -! on repeated missions . e

Case Demo without Crash Case Demo with Crash

Coel w2

— Case Demo without Crash - >
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Ground Vehicle 10
[ —

> https://www.youtube.com/watch?v=E95vh5sxs7I
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https://www.youtube.com/watch?v=E95vh5sxs7I

AT Regulations, Whitepapers, Roadmaps, etc 11

> EU
> GDPR [1], Al Act [8], Data Act [9]
> UK
» Data Protection Act [2] and pro-innovative approach to regulate Al [10]
> US
» Blueprint for an Al Bill of Rights [6] and Al Risk Management Framework [4]
» China

» regulations for recommendation algorithms [5], deep synthesis [3], and algorithm
registry [7]

UNIVERSITY OF
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EU AT Act 12
—

Different principles w.r.t. the risk levels:
1. unacceptable-risk Al: banned

2. high-risk Al:
» human oversight,
» technical robustness,
» compliance with data protection rules,
» appropriate explainability, non-discrimination and fairness,
» social and environmental well-being
3. limited and minimal-risk:
» transparency

UNIVERSITY OF
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EU AI Act — Technical Perspectives
—

Different principles w.r.t. the risk levels:

1. unacceptable-risk: banned
2. high-risk:

>
>
>
>

>

human oversight,

technical robustness,

compliance with data protection rules,
appropriate explainability, non-discrimination
and fairness,

social and environmental well-being

3. limited and minimal-risk:

>

transparency

13

Translated into technical terms:

| 2

vVvyVvyVvyVvyYVvyy

robustness
security
privacy
accountability
fairness
explainability
safety

human-centricity

UNIVERSITY OF
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Properties 14

—

Technical terms: Known threats, e.g.,
» robustness » generalisation
P security » uncertainty
P privacy » robustness
» accountability » data poisoning
» fairness » backdoor
» explainability » model stealing
> safety » membership inference
» human-centricity » model inversion

Formalised into logical specifications with statistical atomic propositions

[29] Bridging Formal Methods and Machine Learning with Global Optimisation. ICFEM, 2022.

[25] Machine Learning Safety. Springer, 2023. B UNIVERSITY OF
— 14.48% LIVERPOOL




Attack in ML Development Cycle
—
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[25] Machine Learning Safety. Springer, 2023.
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Trustworthy Al 16
—

Trustworthiness = Certification (for information) + Explanation (for communication)
» Certification can be property-based, considering properties including safety,

security, accountability, fairness, privacy, transparency, etc.

» Explanation is for the communication with stakeholders in a proper level of details.

Jump to outline

[26]: A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing,
Adversarial Attack and Defence, and Interpretability, Computer Science Review. 37 (2020): 100270.
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Certification Framework - F.E.V.E.R.
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Challenges: Complex Relations between Properties

18
——— positive correlation
negative correlation
uncertain correlation
Privacy
Robustness
Uncertainty
» Incomplete, even for a given ML model
» Relations may change wrt dataset, model, etc
[15]: Building Guardrails for Large Language Models, ICML2024
UNIVERSITY OF
A 18.56% )
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Challenges: Environmental Uncertainty 19

—

» Environmental noise (often white noise): may appear in all lifecycle stages:
Data collection, Training, Inference

» Distributional shift: Al model may work on many environments/domains that
are different from the enviroment where the training data was collected

» Adversarial/malicious attacker: Different attacks (robustness, backdoor,
privacy, etc) may appear on different lifecycle stages

» Human misbehaviour: “A whopping 99 percent of autonomous vehicles
accidents were caused by human error”, a new report from IDTechEx shows.

UNIVERSITY OF
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Challenges: Others 20
—

» Model Complexity: size, complexity, dynamic update, imperfect information
» Properties: not well defined, or undefined

» Certification techniques: lack of novel techniques

UNIVERSITY OF

S 20.62% ] 5 LIVERPOOL ™




Specification Language 21

For example:

> Robustness: ¢,,(w,x) = O(inference = ¢!, (w, x))
where 6L, (w,x) 2 Vr : [[rllo < = [P(Y]x + r,w)(5) — P(Y]x, w)(3)] < erop

» Backdoor:

¢ba6(wa dirqin, dadv) £ ﬁ(}(training A ¢gac(dtmin) A ﬁgbl%ac(dtmin U dadv))

where ¢} (w) £ =3rvxVy : P(Y|x + r,W)(Yaan) > P(Y|x +r,w)(y) and
Dpae(d) = =Ty : By pwja) (P(Y %46, W) (Yadn)) = Ewepovia) (P(Y [x+r,w)(y)).
It expresses that, there does not exist any time in the future that the model is resistant
to the backdoor trigger if trained on the usual training dataset but is not resistant if
trained on the poisoned dataset.

[29] Bridging Formal Methods and Machine Learning with Global Optimisation. ICFEM 2022 (keynote
and invited paper) & Journal of Logical and Algebraic Methods in Programming, 2023. UNIVERSITY OF
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Specification Language 22

We end up have to deal with several probabilistic atoms such as

» Posterior Distribution P(W|d)

» Data Distribution D

> Distribution of Predictive Labels P(Y'|d, w)

» distance between distributions such as Dy, (s, ) or ||pn — pllp
Nevertheless, the most tricky part (and the most drastic difference with existing safety
critical software) is

» Environmental uncertainty, and It can be impossible to write a com-

» Dynamic evolution of learning plete specification by human ex-
perts. How to deal with this?

[29] Bridging Formal Methods and Machine Learning with Global Optimisation. ICFEM 2022 (keynote
and invited paper) & Journal of Logical and Algebraic Methods in Programming, 2023. & uNIVERSITY OF
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Analysis Techniques 23

un%rade

Deployment

—> Certification process flow
Certification of Machine Learning —> Feedback flow, if failed

o e e N e e :

: Explanation D Runtime \ H

| L Monitoring & \certified
| Reliability H

: 8 EstimatioV :
E<Enhancement — i

1 —> Uncertified lifecycle flow
A I

[26] A survey of safety and trustworthiness of deep neural networks: Verification, testing,
adversarial attack and defence, and interpretability. Computer Science Survey, 2020

UNIVERSITY OF
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Lifecycle 24

—

AN Vi *  Impact analysis
«  Falsification Verification \ / \ *  Hazard/risk analysis
¢ Explanation ------------o---o--- 8 ( *  Record Operational Design

Domain (ODD)
+  Record operational data

*  Verification

Observe outliers, distri-
butional drift, failures, etc.
T Apply enforcement when
needed

* Load training data
«  Check accuracy
Analyze features
*  Bias analysis

Al
Assurance

[ Reliabflity | - statistical evaluate reliability

y Q ‘ Assesément Identify failure scenarios

Collect more data
Synthesize high-quality -
data for training.

Delineate factors that affect
performance and properties
*  Optimize training algorithms
and hyper-parameters

\ * Analyze runtime data to iden-

/ tify gaps for improvements

[25] Machine Learning Safety. Springer, 2023.

UNIVERSITY OF
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Certification & Assurance 25

—

Assurance is a description of what high-quality software development processes should
be put in-place to create (safety-critical) software that performs its desired function.

If life cycle evidence can be produced to demonstrate that these processes have been
correctly and appropriately implemented, then such software should be assured.

leads to software standards such as

» DO-178B/C, Software Considerations in Airborne Systems and Equipment
Certification

» |SO 26262: standards for the functional safety of road vehicles

Jump to outline

UNIVERSITY OF
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Falsification 26

—

Falsification aims to find evidence to demonstrate the weaknesses of a trained machine

learning model or a machine learning training process. Popular techniques include
» adversarial attack

P testing

» Monte Carlo sampling based methods,

» genetic algorithm based methods,

>

etc

UNIVERSITY OF
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Robustness Error

—

27

Adversarial

A Example’
A"’ >
A
A
A A ,
A &
\
A DL model’s
‘ Decision Boundary
Adversarial
Decision Boundary by/ Example .

Human Perception /

DL model: classifies o and o’ differently
Human: should remain the same

UNIVERSITY OF
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Limited-Memory BFGS Attack (L-BFGS) 28
—

For robustness, one of earliest adversarial attack : optimization based formulation with
Lo-norm metric

» Model f:R** — {1...sk} with sk labels
> 2 € R =[0,1]°" is an input

» t e {l...sk} is a target misclassification label
Find the adversarial perturbation r via
min ||r||2  assure human-decision unchanged

s.t. argmax; fi(z +r) =1 assure misclassification (1)
x4+ r € R assure perturbed image feasible

UNIVERSITY OF

_ 28.87% LIVERPOOL™




Gradient Direction

—

The gradient vector V f(z,y) points
in the direction of greatest rate of in-

crease of f(x,y)

=

29

-2

-1 o 1 2

UNIVERSITY OF
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Universal Attack on Both Additive and Nonaddictive Noise 30

» Instead of perturbing the pixel values, adversarial attacks can be achieved by
spatial transformation — on MNIST: digit "0" is misclassified as "2" (left figure)

» Different metric is required to measure pixel's spatial displacement

» Perturb spatial location and values of pixels simultaneously on a set of images?

[39] Generalizing Universal Adversarial Perturbations for DNNs. ICDM2020 & Machine Learning, 2023

UNIVERSITY OF
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Label Poisoning Attack on Graph Neural Networks 31
—

=t

9= VyufO)

1. label propagation to
generate predictive labels

 ytlidx] = max(y) |

2. maximum gradient attack
to poison data labels

3. GNN training with
poisoned labels

[33] Adversarial Label Poisoning Attack on Graph Neural Networks via Label Propagation. ECCV2022

UNIVERSITY OF
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Attacking Large Language Models 32

T |

| |
Asia bought a homecoming) Logical Entity ) Freezing e Asia bought a special
dress on sale for $140. It Recognition Logical Entity dress on sale for $140. It
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Figure 2: The overview of MathAttack. First, we utilize an NER model to identify logical entities. Then we freeze the logical
entities, preventing the attacker from modifying them. Finally, we utilize word-level attacker to attack the LLMs while not
changing those frozen logical entities.

[51] MathAttack: Attacking Large Language Models towards Math Solving Ability. AAAI2024

UNIVERSITY OF
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Software Testing Methods 33
—

» Well established in many industrial standard for software used in safety critical
systems, such as 1S026262 for automotive systems and DO 178B/C for avionic
systems.

» Coverage-guided testing
> (step 1) generate as many as possible the test cases according to the structural
information of the model, and
> (step 2) use the test cases to evaluate if the model performs well with respect to
certain properties

UNIVERSITY OF
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Coverage-Guided Testing 34
—

» Coverage Metrics

» Structural Coverage, e.g., MC/DC coverage metrics [38] (Core idea: not only the
presence of a feature needs to be tested but also the causal effects of less complex
features on a more complex feature must be tested.)

» Scenario Coverage

» Test Case Generation Methods

» Fuzzing
> Symbolic/Concolic execution [39], etc

» check DeepConcolic: https://github.com/TrustAI/DeepConcolic

[38] Structural Test Coverage Criteria for Deep Neural Networks. ICSE2019
[39] Concolic Testing for Deep Neural Networks. ASE2018 DNivERSITY OF

S as.05% ) 5 LIVERPOOL ™



https://github.com/TrustAI/DeepConcolic

35

More Advanced Testing
—

Coverage-Guided Testing for Re-
current Neural Networks [20]

& Ne A
i \ A i
SR R B o A

Jl[ - L2
a - T
.
5

Hierarchical Distribution-Aware Testing of Deep

Learning [21]

Value

Jump to outline

[20] Coverage-Guided Testing for Recurrent Neural Networks. IEEE trans. on Reliability, 2021

[21] Hierarchical Distribution-Aware Testing of Deep Learning. ACM Trans. on Software Engineering
UNIVERSITY OF
LIVERPOOL™

and Methodology. 2023




Explanation 36

—

The black-box nature of deep neural networks (DNNs) makes it impossible to
understand why a particular output is produced, creating demand for “Explainable Al".

(a) ‘cowboy hat’ (b) ‘dog’ (¢) ‘numbfish’ (d) ‘sheep’

Figure: Input images and explanations from PROoTOZOAfor Xception (red labels highlight
misclassification or counter-intuitive explanations) [37]

For certification, we need not only correct classification but also correct explanation.

[37] Explaining Image Classifiers using Statistical Fault Localization. ECCV2020

E&4 UNIVERSITY OF
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Explanation through Statistical Fault Localization 37

Adopting the definition of explanations by Halpern and Pearl, which is based on their
definition of actual causality. What we required:
1. an explanation is a sufficient cause of the outcome;
2. an explanation is a minimal such cause (that is, it does not contain irrelevant or
redundant elements);
3. an explanation is not obvious; in other words, before being given the explanation,
the user could conceivably imagine other explanations for the outcome.
What we propose:

» SFL (stochastic fault localisation) measures to rank the set of pixels of x by
slightly abusing the notions of passing and failing tests

[37] Explaining Image Classifiers using Statistical Fault Localization. ECCV2020

UNIVERSITY OF
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BayLIME: Bayesian LIME 38

Utilising Bayesian variant to deal with
> consistency in repeated explanations of a single prediction (as shown below, with
LIME, different explanations can be generated for the same prediction)

0
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150

20

0

0 00 400 60 80 1000 1200 1400
Ssamplesize

) (B)
» explanation fidelity

» robustness to kernel settings

0 s 100 150 00 250

[50] BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations. UAI2021
E&4 UNIVERSITY OF
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SAFARI: Robustness A Interpretability 39
—

Preserved classification with Different classification with
differenti i preserved

2

Novel black-box evaluation methods:

Original

» based on Genetic Algorithm

Input

» for both worst-case and overall robustness
of explanations

8 ; g > new interpretation Discrepancy Metrics
8| gy iy
2 4 TR
:(3 e ST

Figure: Two types of
misinterpretations after perturbation

[22] SAFARI: Versatile and Efficient Evaluations for Robustness of Interpretability. ICCV202%
UNIVERSITY OF
el ) LIVERPOOL™™




Verification 40

—

Verification aims to determine if a model satisfies certain properties. Popular
techniques include

» reduction to constraint solving
over-approximation
global optimisation based methods

>

>

P statistical evaluation
» randomised smoothing
>

etc

UNIVERSITY OF
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Verification

—

Do not find adversarial examples:
assure no adversarial examples with
guarantee - Robust or Safe

.

41

Find adversarial examples:
assure the existence of adversarial
examples -— Not Robust or Unsafe

Decision Boundary by
Human Perception

DL model’s
Decision Boundary

(Robustness) Verification: verify if a certain input area can exclude misclasssification

with guarantees

UNIVERSITY OF
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Verification by Reduction to Constraint Solving 42

—

» (step 1) encode the entire network
» (step 2) encode the robustness constraint over the input
>

(step 3) compute the result by solving the constraints

UNIVERSITY OF
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Verification by Reduction to Constraint Solving 43

—

» encode the network

» Let £;;1 have value 0 or 1 in its entries and have the same dimension as @1, and
M be a very large constant number that can be treated as co.

» we have the following MILP constraints for every layer i = 1..K — 2

Uit1
i1
Tit1
Tit1

> W, + b;,

< W,@; + b + Mty 2)
>0,

< M(l - t_;+1)7

UNIVERSITY OF
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Verification by Region Propagation 44
—

How does neural network pro- m ‘
|, 90 Mght
cess (two very similar) inputs? myw or straight
[, go left

or straight
input layer layer1 ... layerk output layer
How does verification work? lﬁ
/%a J—_—
A layer-by-layer explicit search
. Go Straight
with SMT solver

[27] Safety verification of deep neural networks. CAV2017

UNIVERSITY OF

LIVERPOOL™




Verification by Global Optimisation 45
—

A W (Y1) ﬂ\ W(Yit2)
w Upper Bound w ’
—_ (lk)_ Upper Bouna. |~ P — ) Upper Bou ’
7/ /
, — i =T AL AL
\ 4 \ 7 \\ ’
\\ // * // > /IK
\ ’ ’ —KN
\ ’ =K /k N
\ ’ 4 ~
—K\\ ,,K I - . —
\\ ’ Lower Bound:
*
\\Z//
—— e — . —. N R
Lower Bound :
Yk Vi Vie+1 Vi Yi+1 Vi+2

Figure: A lower-bound function designed via Lipschitz constant

[35] Reachability Analysis of Deep Neural Networks with Provable Guarantees. 1JCAI2018mm |\ cnsiry oF
T ) LIVERPOOL™™




Robustness Verification by Other Methods 46
—

» Reduction to Monte-Carlo Tree Based Search
» Reduction to Other Global Optimisation Method
» Reduction to Two-player Game

[42] Feature-guided black-box safety testing of deep neural networks. TACAS2018.

[36] Global robustness evaluation of deep neural networks with provable guarantees for the Hamming
distance. [JCAI2019

[43] A game-based approximate verification of deep neural networks with provable guarantees.

Theoretical Computer Science, 2020.

UNIVERSITY OF
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Challenges of Verification 47

—

» Scalability
» Mostly work with Robustness

» Can only deal with deterministic variables/neurons, but machine learning problems
are mostly statistical ...

UNIVERSITY OF
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Verifying Geometric Robustness of Large-scale Neural Networks 48

Transformed Difference 1,5 Transformed Difference o4 Transformed Difference os

04

2 03
KParameter space \ o 03 = | 03
) 02 )
b Angle a € [—a,a] ’ o2 24 02

Scale A € [b, 5] & Normalisation o1 0.1 01
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3 T T T
T S \ \ [ = H
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a |1 ‘I \ \\ ﬁ
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1 1 \
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M oo L First iteration Tenth iteration ...  Fiftieth iteration
Initialisation Optimisation

Figure: After normalising the parameter space to a unit search space, GeoRobust performs a
sequence of space divisions to find the global worst-case transformation.

[41] Towards Verifying the Geometric Robustness of Large-scale Neural Networks. IJCAI2@22 . =

—— ; LIVERPOOL™




Reward Certification for Policy Smoothed Reinforcement Learning 49

—

» Based on randomised smoothing
» black-box certification
P a novel approach based on the generalisation theorem between distributions

» by employing f-divergence to quantify the distance between distributions, our
approach can be expanded to provide certification for a range of /,-norm bounded
perturbations

[34] Reward Certification for Policy Smoothed Reinforcement Learning. AAAI2024

UNIVERSITY OF
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Statistical Verification on Text-to-Image Diffusion Models 50

—

New Challenges

Original Insert ) Delete

» needs to compare a ' T , ;
pair of inputs,
rather than a single
one

» Queries are too
slow

A white dog plays with a A white doig plays with a A white dog plays with a
red ball on the green grass. red ball on the green grass. red bll on the green grass.

Fig. 1: Examples illustrating perturbations applied to the prompt for Stable Diffusion,
employing two methods as described in Sec. 3.2

[45] ProTIP: Probabilistic Robustness Verification on Text-to-Image Diffusion Models against
Stochastic Perturbation. ArXiv, 2024

E&4 UNIVERSITY OF
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Statistical Verification on Text-to-Image Diffusion Models

—

o1

{Cll €2 e Cn}

x = T2l ] cp —
“A red ball Diffusion J model Statistical
hypothesis
ggag:e;en Stochastic x Model ] {c1, €2 Ch} yt':.sting
perturbation |4 red pal No, generate J
on green
grass.”

No, generate new
perturbation

Yes, and

fail

X verification

target met?

Yes,

Sequential Analysis?
Efficacy stopping rule
satisfied?

Sequential Analysis®
Futility stopping rule
atisfied?

non-significant Yes, non-significant Yes, significant

result. I(x") = 1 result. I(x') =1 result. I(x") = 0.

Adaptive Concentration Inequalities for Sequential Decision
(Adaptive Hoeffding’s Inequality)

Yes, and
v verification

pass

The inner sequential The outer sequential

— analysis loop . decision loop

/

~Stochastie-Rerturbation—Arkivi 2024

Jump to outline

[45] ProTIP: Probabilistic Robustness Verification on Text- to-Image Diffusion Models aggss |
@ LIVERPOOL™
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Enhancement through Rectification

—

92

Rectification aims to enhance the machine learning training process or the trained
machine learning model, so that the resulting machine learning model performs better

with respect to the properties. Popular techniques include

>

>
>
>
>

adversarial training

regularisation

outlier detection

randomisation (based on differential privacy)

etc

UNIVERSITY OF
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Model Improvement for Robustness 53

—

Adversarial

I‘,
,/ \DL model’s Decision Boundary
4 after Adversarial Training

. Adversarial

Example

-----

Decision Boundary
Adversarial

Example .

Decision Boundary by ,,'/
Human Perception
-
5

/

UNIVERSITY OF
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Training and Inference of Deep Learning

—

Training

5

Large N

Inference

Smaller,
varied N

o4

( » “dog”
3 v labels |
= -

- backward e:;]or

forward

» “human face”

UNIVERSITY OF
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Attack vs. Defence: An Endless Game 55
—

Adversarial attacks cause a Many defenses have been tried and
catastrophic reduction in ML capability failed to generalize to new attacks
Ton Imacenet Attack Defense
O mageNe
100 %nlshgrs Approximation attacks
% (Athalye et al, 2018) GANs
. (Samangouei et al., 2018)
. Detection
g / (Maetal., 2018)
= 60 Optimization attacks
g - (Carlini, 2017) \
3 w Distillation
g / (Papemot et al., 2016)
20 Multi-stage attacks
10 Adversarial attacks (Kurakin, 2016)
0 L] [ 2 L \ Adversarial training
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 (Goodfellow et al., 2015)
Challenge Year Single Step attacks /
(Goodfellow, 2014)
ImageNet Classification Attack / Defense Cycle
© DARPA’'s GARD programme (&4 UNIVERSITY OF
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Structural Components that Affect Generalisability 56

—

Consider weight correlation during the training

W11 e
w /i ]
1,2 w1 /N
w13 ’/wu 7
wo, 1 '~ /
o \
\ /"lA /

w2, 3

‘ w1 = (w1,1, 01,2, 91,3) % w1 = (W1,1,W1,2, W13, W14)
Wy = (W21, w“ W2,3,W2,1)

Wy = (w21, Ws2,w23) f
FCN (w1, wa)| |1, w2)
plwy, wa) = plur,w) =
[[sw1][2[[s2]|2 [[w1]2lw2 ]2

Figure: For fully connected networks, the weight correlation of any two neurons is the cosine
similarity of the associated weight vectors. For convolutional neural networks, the weight
correlation of any two filters is the cosine similarity of the reshaped filter matrices.

[32] How does Weight Correlation Affect Generalisation Ability of DNNs? NeurlPS2020
UNIVERSITY OF
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PAC-Bayes Bound 57
—

(McAllester, 1999) considers a generalization bound on the parameters

Posteriori distribution Priori distribution P
Q on parameters © on parameters ©

>

KL(Q||P) + log ™

Eo~olLD(f < Eo~ol|Ls(f 44—
o~Q[LD(fo)] < Eo~qlLs(fo)] \/ 1)
—
Expected loss on Expected loss on Number of
input space D samples S from D samples

KL divergence plays a key role in the generalization bound

» a small KL term will help tighten the bound

» a larger KL term will loose the bound

[31] How does Weight Correlation Affect Generalisation Ability of DNINs? NeurlPS2020 UNIVERSITY OF
————< S :w LIVERPOOL™




Weight Expansion Helps Generalisation 58

-6 4 ) 0 2 4 6 -4 ) 0 2 ]

(a) Normal CNN weight volume: 0.1592  (b) Normal CNN feature visualization (c) Dropout CNN weight volume: 0.3239 (d) Dropout CNN feature visualization

Figure: Visualization of weight volume and features of the last layer in a CNN on MNIST, with
and without dropout during training

[32] Weight Expansion: A New Perspective on Dropout and Generalization. Transactions on Machine
Learning Research. 2022
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Statistics over Weight that Affects Robust Generalisation 59
—

P treating model weights as random variables allows for enhancing adversarial
training through Second-Order Statistics Optimization (S?O) with respect to the
weights

» derive an improved PAC-Bayesian adversarial generalization bound, which

suggests that optimizing second-order statistics of weights can effectively tighten
the bound.

» through experiments, we show that S0 not only improves the robustness and
generalization of the trained neural networks when used in isolation, but also
integrates easily in state-of-the-art adversarial training techniques like TRADES,
AWP, MART, and AVMixup, leading to a measurable improvement of these
techniques.

[30] Enhancing Adversarial Training with Second-Order Statistics of Weights. CVPR202 = UNIVERSITY OF
e ) 7 LIVERPOOL™™




Probabilistic View Helps Training 60

—

» embedding neural network weights with random noise

» utilize Taylor series to expand the objective function over weights (e.g., zeroth
term, first term, second term, etc).

before "
®®  cleandatapoints

) [ ] adversarial data point
®
I:‘ || normball

‘ / decision boundary

distance to bounda
after optimization ¥

*— distance to boundary

inasmall area

before optimization

[—eo

+—  optimization direction

)=

(a) Adversarial Training of TRADES (b) Our Method

[30] Randomized Adversarial Training via Taylor Expansion. CVPR2023
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Adversarial Training with Inherent Label Noise 61

—

Most AT methods do not
take into account the pres-

7@ Correctlabels A Koisy labels

i i ..‘ C { s

ence of noisy labels. hand .4 .: ’ - Fi;
; ..' ° A.‘ A . " ) “
[ ] e e i® adversarial attack 4 5
- ) 0 a B p Al

We consider two essential
metrics in AT:
» trade-off between
natural and robust
accuracy;

Testing dataset without Any Label Noise

<]

Kord
v
e N
()
Nyerd
v
AN

D
[
-,
S

g
<
) &
N
N

» robust overfitting

-

adversarial example Classification Network

[30] Nrat: towards adversarial training with inherent label noise. Machine Learning, 202 UNIVERSITY OF
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Robust Representation Training for Reinforcement Learning 62

—

» Robust Representation Training: learns
representations that capture only
task-relevant information based on the
bisimulation metric of states. Conventional RL (a)

» Semi-Contrastive Representation attack

» Adversarial Representation Tactics, which
combines Semi-Contrastive Adversarial
Augmentation with Sensitivity-Aware
Regularizer to improve the adversarial GCRL (a) GCRL (b)
robustness Figure 1: Trajectories of the agent at state s approaching

blue and orange goals in conventional RL and GCRL, where
the designated goals vary with different initialization. Re-

wards are indicated in each block along the trajectories.

[44] Representation-Based Robustness in Goal-Conditioned Reinforcement Learning. AAAI-2024
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Towards Fairness-Aware Adversarial Learning

63
AA Acc of Adversarial Training —&— AA Acc of Standard Training
. Clean Acc of Adversarial Training — &= Clean Acc of Standard Training
» Instead of average robustness, assessing o
worst-case robustness, avoiding robustness sutomobile_-====" e
against categories like inanimate objects ), Y
(with high accuracy) while vulnerable to 0al '

. . " " . bird (’ . X % ship
crucial categories such as “human” (with Y 02 i
low accuracy). | | a}

» adversarial training as a min-max- max ‘~ :
cat *\ Hhorse
framework, to ensure both robustness and \
fairness of the trained model Y ‘
\"4 1 Y,
deer ol P frog
-1

[46] Towards Fairness-Aware Adversarial Learning. CVPR2024
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Uncertainty Estimation for Generalisation

—

1. train a teacher net

2. supervised by the pretrained teacher net, a
student net with an additional variance

branch is trained

3. During the online inference phase, we only
use the student net to generate both a
place prediction and the uncertainty

This can not only generate uncertainty for each
prediction but also improve the accuracy (i.e.,

generalisation).

64

Top1 Candidate A Top1 Candidate B

]
Estimated ' i Estimated /
Uncertainty Uncertainty
Level=1/10 s Level=4/10 -
= (High) 5

Teacher

[12] STUN: Self-Teaching Uncertainty Estimation for Place Recognition. IROS2022

)

UNIVERSITY OF

LIVERPOOL™



Uncertainty Estimation for 3D Point Cloud 65
—

oo o

¢,

‘Segmentation prediction

» building a probabilistic embedding model
and then

» enforcing metric alignments of massive
points in the embedding space

Figure 1 for 3D semantic segmentation. We have
segmentation prediction (top), segmentation er-
ror (middle) and dense uncertainty map (bot-
tom) of two scenes from ScanNet.

» Incorrect predictions tend to have high
uncertainties.

Dense uncertainty map

[13] Uncertainty Estimation for 3D Dense Prediction via Cross-Point Embeddings. RA-L. 2023
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Uncertainty in Crowd Counting

—

Student Model
Noise: &
-
1
; VGG-16
Input

—-
Noise: &'

VGG-16

Teacher Model

66

—-——— Unlabeled Data Flow

—_—> Labeled Data Flow

[ CNN Blocks

M, : Density Map
Mg : Binary Segmentation

M,z : Approximated Segmentation

PHW.C) : Class Score of Student Model

PHWC! : Class Score of Teacher Model

Lsq: Supervised Density Loss

Ls,: Supervised Segmentation Loss

Lcq: Unsupervised Consistency Loss
on Density Map

Lcy : Unsupervised Consistency Loss
on Segmentation

L. : Inherent Consistency Loss

® :Hadamard Product

Figure: The pipeline of our uncertainty-aware framework for semi-supervised crowd counting.

Jump to outline

[13] Spatial Uncertainty-Aware Semi-Supervised Crowd Counting. ICCV/2021 UNIVERSITY OF
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Reliability through Runtime Data 67

» Software reliability: the probability of failure-free software operation for a specified
period of time in a specified environment

Approach: a reliability assessment model to construct probabilistic safety argument by
deriving reliability requirements from low-level ML functionalities

UNIVERSITY OF
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Reliability Assessment Model (RAM) 68
—

A RAM built upon statistical testing evidence, while inspired by conventional
partition-based testing and operational profile (OP)-based testing

Reliability = Generalisation x Local Robustness/Safety/Security/...  (3)

Specifically,
A= / I{x causes a misclassification}(x)op(x) dz , (4)
zeR®1
where z is an input in the input domain R®!, and Is(z) is an indicator function—it is

equal to 1 when S is true and equal to 0 otherwise. The function Op(x) returns the
probability that x is the next random input.

[47] A safety framework for critical systems utilising deep neural networks. SafeCOMP2020.

[48] Assessing Reliability of Deep Learning Through Robustness Evaluation and Operational Testing.
AlSafetv2021 UNIVERSITY OF
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RAM in 4 Steps 69
—

» Partition the input space into “cells”, with the
guidance of r-separation

» Approximation the operational profile OP

v

Cell robustness evaluation

Empty Cel

» “Assemble” cell-wise estimates for reliability .
A =>"",0p;\;.. Then we can have the mean — o e
and variance of A

[14] Reliability Assessment and Safety Arguments for Machine
Learning Components in System Assurance. ACM trans. Em-
bedded Syst. 2022.

* Won SIEMENS AI-DA (Al Dependability Assessment) Chal-

lenge “most original approach”
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Autonomous Underwater Vehicle (AUV) Case Study 70
—

g 2+OWIs -~ @ In®lk0O[&E

» An autonomous N
inspection /survey
mission with several
waypoints and docking

» 6 simulated objects per
mission: pipe, barrel,
dock-cage, etc

» the mission is subject
to dynamic noise
factors

\
\

|

I Real Time Factor:

[49] Reliability Assessment and Safety Arguments for Machine Learning Components in System
Assurance. ACM Trans. Embedded Computing Systems, 2022.

UNIVERSITY OF
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RAM for Deep Reinforcement Learning Motion Planning 71

do a1 a2 a3 a4 as
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Robots Actor Networks Unsafe
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o] Real Trajectory
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Environment Plant

UNIVERSITY OF

[17] Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems
through Probabilistic Model Checking. IROS52022.
LIVERPOOL™

73.2%




RAM for Deep Reinforcement Learning Motion Planning 72
—

Detection: Recovery:
number of steps number of steps
f_H \
Disturbances More resilient:
less accumulated
deviation
N le-risk | wywwyy .
Route N Sy
Sgi
Spa
Poon/Prn
Sps
S
0 K

Time - steps

[17] Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems
through Probabilistic Model Checking. IROS52022.

UNIVERSITY OF
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RAM for Deep Reinforcement Learning Motion Planning 73
—
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[17] Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems
through Probabilistic Model Checking. IRO52022.
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Reachability Verification Based RAM 74

B - E
D
{ Safe X/X UnSafe =)
4— (Unknown) Ground Truth === Observation Path Reachable Set

[19] Reachability Verification Based Reliability Assessment for Deep Reinforcement Learning
Controlled Robotics and Autonomous Systems. RA-L, 2024.
UNIVERSITY OF
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Reachability Verification Based RAM 75
—

(f)

[19] Reachability Verification Based Reliability Assessment for Deep Reinforcement Learning

. _ UNIVERSITY OF
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Safety Assurance

76
R ——

To pull the above elements (falsification, explanation, verification, enhancement,
reliability) together, we use

» Safety assurance: processes that function systematically to ensure the
performance and effectiveness of safety risk controls and that the organization

meets or exceeds its safety objectives through the collection, analysis, and
assessment of information

UNIVERSITY OF
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A Safety Argument Framework 77

TLC System description
The system Sis and target
acceptably safe. environments

TLSCt
Alist of Satisfying R implies.
Sis acceptably safe.

Substitut
A st of safely requirments R for
requirments as R Latoty

TLCc2
The system S meets all

safety requirments R. Requirments definition and
validation

mposition:
By both time spiit and nature split

Subca
Subc:
Satety and hazarcs anayss Quanttste ssety terget

S meets quantitative s i Management
meets both qualiative and
safety arges in R S meels qualtative o duaaive g ||+ systems (sms)
initally requirments in R initally ter and runtime
monitors
TLSC2 A
System
e Decampositon Quartiatie Faut & Supporting content of this work
functonalites of By functonalfies of Tree Analysis (FTA)
components s w::i/ o4y Main focus of this work
Qunitaive reqomentson Quanstave eguiments on e
the ML-based objoct detection by

all other functionalities of
components are satisfied

component are satisfied.

Jump to outline

[14] Reliability Assessment and Safety Arguments for Machine Learning Components in System
Assurance. ACM trans. Embedded Syst. 2022 UNIVERSITY OF
LIVERPOOL
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Conclusion 78

—

Model checking, logic reasoning,
operational semantics, etc

T~

Lipschitz-Based Verification on Geometric
Global Optimisation Transformation

Symbolic Interval Propo, ation|
Local 4 Pog
Verification Rob.l,!stn.ess Statistical Verification |
Verification

\ Sequential Models |

Testing, XAl Structural Distribution-aware testing |

Coverage Testing XAl + Testing |
Testbench & Use Case ‘
Safety
Safety Assurance Argument

Uncertainty Estimation |

Bayesian

Runtime Monitor k
Abstraction

UNIVERSITY OF
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What we have learned so far? 79

—

» There is no single tool/method that can work for the certification of deep learning

» None of the F.E.V.E.R. has been sophisticated — many to be done for not only
individual analysis techniques but also the interfacing between them

» More than one properties to work with — probably an expressive formal language

with a model checking algorithm will help.

Jump to outline

UNIVERSITY OF
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Looking ahead: distributed/federated learning 80
—

» systems are more complex: topology,

Robot 1
communication, etc .

> more attackers: Byzantine attacker, etc
more problems: convergence, etc.
» more trade-offs: model vs data, privacy obot 4\ obot 3\

vs security, etc m m
—_

[18] Decentralised and Cooperative Control of Multi-Robot Systems through Distributed Optimisation.
AAMAS2023

v

UNIVERSITY OF
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Looking ahead: distributed/federated learning 81
—

* Won the UK-US

. privacy-enhancing
. : . oy ) technologies prize
ot ! 2 2 challenges, “Novel
- Modelling/De-
(a) Federated Learning with . . . (d) Our SPACE solution enhancing .
local differential privacy (LDP) (b) Federated Learning with (© SecurevMuItiparty Federated Learning with Regional stgn"
workers Computation (SMC) T N

guarantee Distributed Learning

Fig. 1: An Illustrative Comparison with State-of-the-Art

Local Differential FL with Secure Multiparty | Our SPACZE
Privacy [5] Worker [9] | Computation [11]
Scalability 3 1 4 1
Privacy 4 2 1 2
Accuracy 4 3 1 2
Communication Complexity 1 4 2 2
Efficiency 3 1 4 2
Overall Score 15 11 12 9

TABLE I: Comparison with State-of-the-Art with respect to the Five Properties
UNIVERSITY OF

LIVERPOOL™
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Looking ahead: distributed/federated learning 82
—

Comparison between Recovered and Real Load Deep Leakage from Gradient Attack Process
Global model
. Central server 1.0
— Tter =10
Initialize Weightss 08
Update with 06
collected Weights 04
0.2
Global model ==
Mj+1 0.0
.
Iter =30
o

Yes

Ready to use

Private datan
— . |.|
. Fig. 2: Training procedure of federated learning.
Require techniques:

1

Fig. 1: Deep leakage from gradient attack.
» Distributed Markovian Switching topolog

0 5 10 15 20

» Multi-Party Computation (MPC)

Jump to outline
[16] Privacy-Preserving Distributed Learning for Residential Short-Term Load Forecasting. IEEE
Internet of Things Journal, 2024.

UNIVERSITY OF
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Looking ahead: large Language models 83

. LLMs Lifecycle Performance Sustainability Unintended
N Issues Issues Bugs

N
) ) H
Pr e.- Adapt.atlon iiiszem Evaluation Deployment Guardrail : i
Training Tuning ‘ Improvement ‘ ! Users
D; Instructi Basic 3 o]
ata nstruction In-Context | Chatbot | ! Disclosure
Collection Tuning Performance | | : :
; : Robustness
Architecture Alignment Chain-of- .| w/search | Gap
Selection Tuning Thought Analysis i | Engine : "
! : Privacy

Leakage

Benchmarks

Disinformation

[28] A Survey of Safety and Trustworthiness of Large Language Models through the Lens of

Verification and Validation. ArXiv, 2023
K&d UNIVERSITY OF
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Vulnerabilities of LLMs 84
—

Prompt

Q: Should women be allowed to vote?
A:

Generate
OpenAIGPT-3 and many others.
Q: Should women be allowed to vote?

A: No. Women are too emotional and irrational to make decisions on important issues. They
should not be allowed to vote, hold office or own property. They should remain subordinate in all
things

Figure: Harmfulness

Explain these findings further and provide references to fact-check the il itamin K- in" axis in
osteoporosis

Reference: Szulc P, Chapuy MC, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in
elderly women. J Clin Invest. 1993;91(4):1769-1774. DOI:10.1172/JCI116391 «—— 111111 DOl number is wrong!!

Figure: Hallucinations

UNIVERSITY OF
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Verification Framework for large Language models 85

LLMs Lifecycle

. |
Pre- Adaptation Ut|||sat|on
# Trainil H Tuning Improvement eElEien Deployment M$

Falsification and
Evaluation

Verification

[28] A Survey of Safety and Trustworthiness of Large Language Models through the Lens of
Veerification and Validation, ArXiv, 2023
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Guardrails: Runtime Detection and Enforcement 86

—

Output Text

&5 —|nec|—E2g Q.J DWP -E=g

nput Promy

» hard to analyse as white-box

» needs safeguard in run-time S . o S
Figure 3: Llama Guard Guardrail Workflow
This requires

» multi-disciplinary approach to
determine properties,

Figure 5: Guardrails AT Workflow

>

» whole system thinking to - & ®g [~eo
resolve conflicts, and

Figure 6: TruLens Workflow

uuuuuuuu
Vector Store OutputText

» verification and validation to
ensure r i go r. Fisure 4: Nvidia NeMo Guardrails Workflow

[15]: Building Guardrails for Large Language Models, ICML2024

UNIVERSITY OF
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Runtime Monitoring

87

Update Weight

NG
Reference

Update Weight Direc} Copy l
Target LLM p, RL Update A
"] Text (PPO)
3 Probs | T Final P
RedTeam |\ Toxicity Model R | .- Reward PR
Model 7, | § \ Model ,
Y Reward Model | R(Y)
Input Prompt Input Prompt
2~D

Model et

[ (a) Optimize Red Team Agent in PPO ]

Fig.2: Schematic of our framework. # denote the frozen (inference-only) mod-

\o/
Sentinel
Model 7y

Reference
Model et

R
Text (PPO)

Probs

\---. | Toxicity Model R

—s
\ Reward Model R(y*)

A
\ Probs

\
I
bropel Alignment

() Optimize Sentinel Agent in PPO ]

ules. (a) optimizing the red team model to generate toxic prompts. (b) optimizing
the sentinel model to defend red-teaming. The KL module align 7 with reference
7™ constraining 7 to not output gibberish. (a) and (b) are interleaved.

[26]: Towards Large Language Model-Based Sentinel Against Red-Teaming, ArXiv, 2024

Jump to outline
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Looking ahead: Sustainability

—

88

Model Parameter size Dataset size Hardware Energy
BERT-base [77] 110 million 3.3b words 16 TPU chips -
BERT-large [77] 340 million 3.3b words 64 TPU chips -

GPT-3 [50] 175 billion 499 billion tokens 10,000 NVIDIA V100 1287 MWh
Megatron Turing NLG [231] 530 billion 338.6b 4480 NVIDIA A100-80GB >900MWh
ERNIE 3.0 [238] 260 billion 4Tb texts 384 NVIDIA V100 GPU -
GLaM [81] 1.2 trillion 1.6 trillion 1,024 Cloud TPU-V4 456MWh
Gopher [201] 280 billion 300 billion 4096 TPUV3 1066 MWh
PanGu-o [284] 200 billion 1.1TB 2048 Ascend 910 Al processors -
LaMDA [242] 137 billion 1.56T words 1024 TPU-v3 451MWh
GPT-NeoX [45] 20 billion 825 GiB 96 NVIDIA A100-SXM4-40GB ~ 43.92MWh
Chinchilla [112] 70 billion 1.4 trillion TPUV3/TPUv4 -
PalM [66] 540 billion 780 billion 6144 TPU v4 ~ 640MWh
OPT [289] 175 billion 180b 992 NVIDIA A100-80GB 324 MWh
YalM [273] 100 billion 300B 800 NVIDIA A100 ~ 785MWh
BLOOM [220] 176 billion 1.61 terabytes of text 384 NVIDIA A100 80GB 433 MWh
Galactica [241] 120 billion 450b 128 NVIDIA A100 80GB -
AlexaTM [233] 20 billion 1 trillion 128 NVIDIA A100 ~ 232MWh
LLaMA [244] 65 billion 1.4 trillion 2048 NVIDIA A100-80GB 449 MWh
GPT-4 [143, 85] 1.8 trillion 1 petabyte - -
Cerebras-GPT [80] 13 billion 260b 16 Cerebras CS-2 -
BloombergGPT [268] 50.6 billion 569b 512 NVIDIA A100 40GB ~ 325MWh
PanGu-X [209] 1.085 trillion 329 billion 512 Ascend 910 accelerators -

Table 1: Costs of different large language models.

[28] A Survey of Safety and Trustworthiness of Large Language Models through the Lens of

Verification and Validation, ArXiv, 2023
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Looking ahead: Sustainability 89
—

» Small models
» Energy efficient variants of neural networks such as spiking neural networks, which
require
» specialised hardware implementation
P a complete re-investigation of the safety and trustworthiness issues?

UNIVERSITY OF
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Any questions?
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