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Outline 2

Motivations: What does AI Safety constitute?
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A Learning-Enabled Vehicle Tracking System 4

▶ trained on WPAFB 2009 dataset [11]: The images were taken by a camera system
with six optical sensors that had already been stitched to cover a wide area of
around 35km2. Image size: 12,000×10,000. The frame rate is 1.25Hz.

Figure: (a) The architecture of the vehicle detector. (b) Workflow for testing the WAMI
tracking system.

[40] Reliability Validation of Learning Enabled Vehicle Tracking. ICRA2020
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Safety of Learning Enabled Vehicle Tracking 5

Figure: Original detected tracks Figure: Distorted tracks

[40] Reliability Validation of Learning Enabled Vehicle Tracking. ICRA2020
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Practical Verification of Vehicle Tracking System 6

(a) Heuristic search (b) Verification (c) Enumeration of all possible Tracks

[24] Practical Verification of Neural Network Enabled State Estimation System for Robotics.

IROS2020.
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Verification of Robustness and Resilience 7

▶ robustness: consistently deliver its
’expected’ functionality, even in
the presence of disturbances to the
input.

▶ resilience: withstand and recover
from challenging conditions, which
may involve internal failures and
external shocks.

[23] Formal verification of robustness and re-

silience of learning-enabled state estimation sys-

tems for robotics. Neurocomputing, 2024.
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Underwater Vehicle 8

▶ Scenario: https://youtu.be/akY8f5sSFpY?t=13

▶ simulation / testing: https://youtu.be/akY8f5sSFpY?t=155

▶ verification: https://youtu.be/WNjUP_qL6W4?t=475

https://youtu.be/akY8f5sSFpY?t=13
https://youtu.be/akY8f5sSFpY?t=155 
https://youtu.be/WNjUP_qL6W4?t=475
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Underwater Vehicle 9
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Ground Vehicle 10

▶ https://www.youtube.com/watch?v=E95vh5sxs7I

https://www.youtube.com/watch?v=E95vh5sxs7I
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AI Regulations, Whitepapers, Roadmaps, etc 11

▶ EU
▶ GDPR [1], AI Act [8], Data Act [9]

▶ UK
▶ Data Protection Act [2] and pro-innovative approach to regulate AI [10]

▶ US
▶ Blueprint for an AI Bill of Rights [6] and AI Risk Management Framework [4]

▶ China
▶ regulations for recommendation algorithms [5], deep synthesis [3], and algorithm

registry [7]
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EU AI Act 12

Different principles w.r.t. the risk levels:

1. unacceptable-risk AI: banned

2. high-risk AI:
▶ human oversight,
▶ technical robustness,
▶ compliance with data protection rules,
▶ appropriate explainability, non-discrimination and fairness,
▶ social and environmental well-being

3. limited and minimal-risk:
▶ transparency
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EU AI Act – Technical Perspectives 13

Different principles w.r.t. the risk levels:

1. unacceptable-risk: banned

2. high-risk:
▶ human oversight,
▶ technical robustness,
▶ compliance with data protection rules,
▶ appropriate explainability, non-discrimination

and fairness,
▶ social and environmental well-being

3. limited and minimal-risk:
▶ transparency

Translated into technical terms:

▶ robustness

▶ security

▶ privacy

▶ accountability

▶ fairness

▶ explainability

▶ safety

▶ human-centricity
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Properties 14

Technical terms:

▶ robustness

▶ security

▶ privacy

▶ accountability

▶ fairness

▶ explainability

▶ safety

▶ human-centricity

Known threats, e.g.,

▶ generalisation

▶ uncertainty

▶ robustness

▶ data poisoning

▶ backdoor

▶ model stealing

▶ membership inference

▶ model inversion

Formalised into logical specifications with statistical atomic propositions

[29] Bridging Formal Methods and Machine Learning with Global Optimisation. ICFEM, 2022.
[25] Machine Learning Safety. Springer, 2023.



15.46%

Attack in ML Development Cycle 15

[25] Machine Learning Safety. Springer, 2023.
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Trustworthy AI 16

Trustworthiness = Certification (for information) + Explanation (for communication)

▶ Certification can be property-based, considering properties including safety,
security, accountability, fairness, privacy, transparency, etc.

▶ Explanation is for the communication with stakeholders in a proper level of details.

Jump to outline

[26]: A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing,

Adversarial Attack and Defence, and Interpretability, Computer Science Review. 37 (2020): 100270.
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Challenges: Complex Relations between Properties 18

▶ Incomplete, even for a given ML model

▶ Relations may change wrt dataset, model, etc

[15]: Building Guardrails for Large Language Models, ICML2024



19.59%

Challenges: Environmental Uncertainty 19

▶ Environmental noise (often white noise): may appear in all lifecycle stages:
Data collection, Training, Inference

▶ Distributional shift: AI model may work on many environments/domains that
are different from the enviroment where the training data was collected

▶ Adversarial/malicious attacker: Different attacks (robustness, backdoor,
privacy, etc) may appear on different lifecycle stages

▶ Human misbehaviour: “A whopping 99 percent of autonomous vehicles
accidents were caused by human error”, a new report from IDTechEx shows.
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Challenges: Others 20

▶ Model Complexity: size, complexity, dynamic update, imperfect information

▶ Properties: not well defined, or undefined

▶ Certification techniques: lack of novel techniques
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Specification Language 21

For example:

▶ Robustness: ϕrob(w, x) ≜ □(inference ⇒ ϕ1
rob(w, x))

where ϕ1
rob(w, x) ≜ ∀r : ||r||2 ≤ c ⇒ |P (Y |x+ r,w)(ŷ)− P (Y |x,w)(ŷ)| ≤ ϵrob

▶ Backdoor:
ϕbac(w,dtrain,dadv) ≜ ¬♢(training ∧ ϕ2

bac(dtrain) ∧ ¬ϕ2
bac(dtrain ∪ dadv))

where ϕ1
bac(w) ≜ ¬∃r∀x∀y : P (Y |x+ r,w)(yadv) ≥ P (Y |x+ r,w)(y) and

ϕ2
bac(d) ≜ ¬∃r∀x∀y : Ew∼P (W |d)(P (Y |x+r,w)(yadv)) ≥ Ew∼P (W |d)(P (Y |x+r,w)(y)).

It expresses that, there does not exist any time in the future that the model is resistant
to the backdoor trigger if trained on the usual training dataset but is not resistant if
trained on the poisoned dataset.

[29] Bridging Formal Methods and Machine Learning with Global Optimisation. ICFEM 2022 (keynote

and invited paper) & Journal of Logical and Algebraic Methods in Programming, 2023.
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Specification Language 22

We end up have to deal with several probabilistic atoms such as

▶ Posterior Distribution P (W |d)
▶ Data Distribution D
▶ Distribution of Predictive Labels P (Ŷ |d,w)
▶ distance between distributions such as DKL(µ, µ) or ||µ− µ||p

Nevertheless, the most tricky part (and the most drastic difference with existing safety
critical software) is

▶ Environmental uncertainty, and

▶ Dynamic evolution of learning

It can be impossible to write a com-
plete specification by human ex-
perts. How to deal with this?

[29] Bridging Formal Methods and Machine Learning with Global Optimisation. ICFEM 2022 (keynote
and invited paper) & Journal of Logical and Algebraic Methods in Programming, 2023.
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Analysis Techniques 23

[26] A survey of safety and trustworthiness of deep neural networks: Verification, testing,

adversarial attack and defence, and interpretability. Computer Science Survey, 2020
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Lifecycle 24

[25] Machine Learning Safety. Springer, 2023.
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Certification & Assurance 25

Assurance is a description of what high-quality software development processes should
be put in-place to create (safety-critical) software that performs its desired function.

If life cycle evidence can be produced to demonstrate that these processes have been
correctly and appropriately implemented, then such software should be assured.

leads to software standards such as

▶ DO-178B/C, Software Considerations in Airborne Systems and Equipment
Certification

▶ ISO 26262: standards for the functional safety of road vehicles

Jump to outline



26.8%

Falsification 26

Falsification aims to find evidence to demonstrate the weaknesses of a trained machine
learning model or a machine learning training process. Popular techniques include

▶ adversarial attack

▶ testing

▶ Monte Carlo sampling based methods,

▶ genetic algorithm based methods,

▶ etc
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Robustness Error 27

DL model: classifies α and α′ differently
Human: should remain the same
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Limited-Memory BFGS Attack (L-BFGS) 28

For robustness, one of earliest adversarial attack : optimization based formulation with
L2-norm metric

▶ Model f : Rs1 → {1 . . . sK} with sK labels

▶ x ∈ Rs1 = [0, 1]s1 is an input

▶ t ∈ {1 . . . sK} is a target misclassification label

Find the adversarial perturbation r via

min ||r||2 assure human-decision unchanged
s.t. argmaxl fl(x+ r) = t assure misclassification

x+ r ∈ Rs1 assure perturbed image feasible
(1)
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Gradient Direction 29

The gradient vector ∇f(x, y) points
in the direction of greatest rate of in-
crease of f(x, y)
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Universal Attack on Both Additive and Nonaddictive Noise 30

▶ Instead of perturbing the pixel values, adversarial attacks can be achieved by
spatial transformation – on MNIST: digit ”0” is misclassified as ”2” (left figure)

▶ Different metric is required to measure pixel’s spatial displacement

▶ Perturb spatial location and values of pixels simultaneously on a set of images?

[39] Generalizing Universal Adversarial Perturbations for DNNs. ICDM2020 & Machine Learning, 2023
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Label Poisoning Attack on Graph Neural Networks 31

1. label propagation to
generate predictive labels

2. maximum gradient attack
to poison data labels

3. GNN training with
poisoned labels

[33] Adversarial Label Poisoning Attack on Graph Neural Networks via Label Propagation. ECCV2022
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Attacking Large Language Models 32

[51] MathAttack: Attacking Large Language Models towards Math Solving Ability. AAAI2024
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Software Testing Methods 33

▶ Well established in many industrial standard for software used in safety critical
systems, such as ISO26262 for automotive systems and DO 178B/C for avionic
systems.

▶ Coverage-guided testing
▶ (step 1) generate as many as possible the test cases according to the structural

information of the model, and
▶ (step 2) use the test cases to evaluate if the model performs well with respect to

certain properties
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Coverage-Guided Testing 34

▶ Coverage Metrics
▶ Structural Coverage, e.g., MC/DC coverage metrics [38] (Core idea: not only the

presence of a feature needs to be tested but also the causal effects of less complex
features on a more complex feature must be tested.)

▶ Scenario Coverage

▶ Test Case Generation Methods
▶ Fuzzing
▶ Symbolic/Concolic execution [39], etc

▶ check DeepConcolic: https://github.com/TrustAI/DeepConcolic

[38] Structural Test Coverage Criteria for Deep Neural Networks. ICSE2019

[39] Concolic Testing for Deep Neural Networks. ASE2018

https://github.com/TrustAI/DeepConcolic
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More Advanced Testing 35

Coverage-Guided Testing for Re-
current Neural Networks [20]

Hierarchical Distribution-Aware Testing of Deep
Learning [21]

Jump to outline

[20] Coverage-Guided Testing for Recurrent Neural Networks. IEEE trans. on Reliability, 2021

[21] Hierarchical Distribution-Aware Testing of Deep Learning. ACM Trans. on Software Engineering

and Methodology, 2023
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Explanation 36

The black-box nature of deep neural networks (DNNs) makes it impossible to
understand why a particular output is produced, creating demand for “Explainable AI”.

(a) ‘cowboy hat’ (b) ‘dog’ (c) ‘numbfish’ (d) ‘sheep’

Figure: Input images and explanations from Protozoafor Xception (red labels highlight
misclassification or counter-intuitive explanations) [37]

For certification, we need not only correct classification but also correct explanation.

[37] Explaining Image Classifiers using Statistical Fault Localization. ECCV2020
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Explanation through Statistical Fault Localization 37

Adopting the definition of explanations by Halpern and Pearl, which is based on their
definition of actual causality. What we required:

1. an explanation is a sufficient cause of the outcome;

2. an explanation is a minimal such cause (that is, it does not contain irrelevant or
redundant elements);

3. an explanation is not obvious; in other words, before being given the explanation,
the user could conceivably imagine other explanations for the outcome.

What we propose:

▶ SFL (stochastic fault localisation) measures to rank the set of pixels of x by
slightly abusing the notions of passing and failing tests

[37] Explaining Image Classifiers using Statistical Fault Localization. ECCV2020
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BayLIME: Bayesian LIME 38

Utilising Bayesian variant to deal with

▶ consistency in repeated explanations of a single prediction (as shown below, with
LIME, different explanations can be generated for the same prediction)

▶ explanation fidelity

▶ robustness to kernel settings

[50] BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations. UAI2021
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SAFARI: Robustness ∧ Interpretability 39

Figure: Two types of
misinterpretations after perturbation

Novel black-box evaluation methods:

▶ based on Genetic Algorithm

▶ for both worst-case and overall robustness
of explanations

▶ new interpretation Discrepancy Metrics

Jump to outline

[22] SAFARI: Versatile and Efficient Evaluations for Robustness of Interpretability. ICCV2023.
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Verification 40

Verification aims to determine if a model satisfies certain properties. Popular
techniques include

▶ reduction to constraint solving

▶ over-approximation

▶ global optimisation based methods

▶ statistical evaluation

▶ randomised smoothing

▶ etc
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Verification 41

(Robustness) Verification: verify if a certain input area can exclude misclasssification
with guarantees
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Verification by Reduction to Constraint Solving 42

▶ (step 1) encode the entire network

▶ (step 2) encode the robustness constraint over the input

▶ (step 3) compute the result by solving the constraints
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Verification by Reduction to Constraint Solving 43

▶ encode the network

▶ Let t⃗i+1 have value 0 or 1 in its entries and have the same dimension as v⃗i+1, and
M be a very large constant number that can be treated as ∞.

▶ we have the following MILP constraints for every layer i = 1..K − 2

v⃗i+1 ≥ Wiv⃗i + b⃗i,

v⃗i+1 ≤ Wiv⃗i + b⃗i +Mt⃗i+1,
v⃗i+1 ≥ 0,
v⃗i+1 ≤ M(1− t⃗i+1),

(2)
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Verification by Region Propagation 44

How does neural network pro-
cess (two very similar) inputs?

How does verification work?

A layer-by-layer explicit search
with SMT solver

[27] Safety verification of deep neural networks. CAV2017
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Verification by Global Optimisation 45

−𝐾

Upper Bound

𝐾

𝑦𝑘 𝑦𝑘+1𝑦𝑖

𝑤(𝑦𝑘)

𝑤(𝑦𝑘+1)

𝒛∗

Lower Bound

−𝐾

Upper Bound

𝐾

𝑦𝑘 𝑦𝑘+2𝑦𝑘+1

𝑤(𝑦𝑘)

𝑤(𝑦𝑘+2)

Lower Bound

−𝐾
𝐾

Figure: A lower-bound function designed via Lipschitz constant

[35] Reachability Analysis of Deep Neural Networks with Provable Guarantees. IJCAI2018.
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Robustness Verification by Other Methods 46

▶ Reduction to Monte-Carlo Tree Based Search

▶ Reduction to Other Global Optimisation Method

▶ Reduction to Two-player Game

[42] Feature-guided black-box safety testing of deep neural networks. TACAS2018.
[36] Global robustness evaluation of deep neural networks with provable guarantees for the Hamming
distance. IJCAI2019

[43] A game-based approximate verification of deep neural networks with provable guarantees.

Theoretical Computer Science, 2020.
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Challenges of Verification 47

▶ Scalability

▶ Mostly work with Robustness

▶ Can only deal with deterministic variables/neurons, but machine learning problems
are mostly statistical ...
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Verifying Geometric Robustness of Large-scale Neural Networks 48

Figure: After normalising the parameter space to a unit search space, GeoRobust performs a
sequence of space divisions to find the global worst-case transformation.

[41] Towards Verifying the Geometric Robustness of Large-scale Neural Networks. IJCAI2023
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Reward Certification for Policy Smoothed Reinforcement Learning 49

▶ Based on randomised smoothing

▶ black-box certification

▶ a novel approach based on the generalisation theorem between distributions

▶ by employing f -divergence to quantify the distance between distributions, our
approach can be expanded to provide certification for a range of lp-norm bounded
perturbations

[34] Reward Certification for Policy Smoothed Reinforcement Learning. AAAI2024
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Statistical Verification on Text-to-Image Diffusion Models 50

New Challenges

▶ needs to compare a
pair of inputs,
rather than a single
one

▶ Queries are too
slow

[45] ProTIP: Probabilistic Robustness Verification on Text-to-Image Diffusion Models against

Stochastic Perturbation. ArXiv, 2024
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Statistical Verification on Text-to-Image Diffusion Models 51

Jump to outline

[45] ProTIP: Probabilistic Robustness Verification on Text-to-Image Diffusion Models against

Stochastic Perturbation. ArXiv, 2024
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Enhancement through Rectification 52

Rectification aims to enhance the machine learning training process or the trained
machine learning model, so that the resulting machine learning model performs better
with respect to the properties. Popular techniques include

▶ adversarial training

▶ regularisation

▶ outlier detection

▶ randomisation (based on differential privacy)

▶ etc
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Model Improvement for Robustness 53
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Training and Inference of Deep Learning 54
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Attack vs. Defence: An Endless Game 55

@ DARPA’s GARD programme
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Structural Components that Affect Generalisability 56

Consider weight correlation during the training

Figure: For fully connected networks, the weight correlation of any two neurons is the cosine
similarity of the associated weight vectors. For convolutional neural networks, the weight
correlation of any two filters is the cosine similarity of the reshaped filter matrices.

[32] How does Weight Correlation Affect Generalisation Ability of DNNs? NeurIPS2020



58.76%

PAC-Bayes Bound 57

(McAllester, 1999) considers a generalization bound on the parameters

KL divergence plays a key role in the generalization bound

▶ a small KL term will help tighten the bound

▶ a larger KL term will loose the bound

[31] How does Weight Correlation Affect Generalisation Ability of DNNs? NeurIPS2020
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Weight Expansion Helps Generalisation 58

Figure: Visualization of weight volume and features of the last layer in a CNN on MNIST, with
and without dropout during training

[32] Weight Expansion: A New Perspective on Dropout and Generalization. Transactions on Machine
Learning Research. 2022



60.82%

Statistics over Weight that Affects Robust Generalisation 59

▶ treating model weights as random variables allows for enhancing adversarial
training through Second-Order Statistics Optimization (S2O) with respect to the
weights

▶ derive an improved PAC-Bayesian adversarial generalization bound, which
suggests that optimizing second-order statistics of weights can effectively tighten
the bound.

▶ through experiments, we show that S2O not only improves the robustness and
generalization of the trained neural networks when used in isolation, but also
integrates easily in state-of-the-art adversarial training techniques like TRADES,
AWP, MART, and AVMixup, leading to a measurable improvement of these
techniques.

[30] Enhancing Adversarial Training with Second-Order Statistics of Weights. CVPR2022
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Probabilistic View Helps Training 60

▶ embedding neural network weights with random noise

▶ utilize Taylor series to expand the objective function over weights (e.g., zeroth
term, first term, second term, etc).

[30] Randomized Adversarial Training via Taylor Expansion. CVPR2023
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Adversarial Training with Inherent Label Noise 61

Most AT methods do not
take into account the pres-
ence of noisy labels.

We consider two essential
metrics in AT:

▶ trade-off between
natural and robust
accuracy;

▶ robust overfitting

[30] Nrat: towards adversarial training with inherent label noise. Machine Learning, 2024.
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Robust Representation Training for Reinforcement Learning 62

▶ Robust Representation Training: learns
representations that capture only
task-relevant information based on the
bisimulation metric of states.

▶ Semi-Contrastive Representation attack

▶ Adversarial Representation Tactics, which
combines Semi-Contrastive Adversarial
Augmentation with Sensitivity-Aware
Regularizer to improve the adversarial
robustness

[44] Representation-Based Robustness in Goal-Conditioned Reinforcement Learning. AAAI-2024
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Towards Fairness-Aware Adversarial Learning 63

▶ Instead of average robustness, assessing
worst-case robustness, avoiding robustness
against categories like inanimate objects
(with high accuracy) while vulnerable to
crucial categories such as “human” (with
low accuracy).

▶ adversarial training as a min-max- max
framework, to ensure both robustness and
fairness of the trained model

[46] Towards Fairness-Aware Adversarial Learning. CVPR2024
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Uncertainty Estimation for Generalisation 64

1. train a teacher net

2. supervised by the pretrained teacher net, a
student net with an additional variance
branch is trained

3. During the online inference phase, we only
use the student net to generate both a
place prediction and the uncertainty

This can not only generate uncertainty for each
prediction but also improve the accuracy (i.e.,
generalisation).

Estimated 
Uncertainty 
Level=4/10 

(High)

Teacher 
Net

Estimated 
Uncertainty 
Level=1/10 

(Low)

Top1 Candidate A

Query BQuery A

Student 
Net

Top1 Candidate B

STUN

Teacher 
Net

Student 
Net

STUN

[12] STUN: Self-Teaching Uncertainty Estimation for Place Recognition. IROS2022
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Uncertainty Estimation for 3D Point Cloud 65

▶ building a probabilistic embedding model
and then

▶ enforcing metric alignments of massive
points in the embedding space

Figure 1 for 3D semantic segmentation. We have
segmentation prediction (top), segmentation er-
ror (middle) and dense uncertainty map (bot-
tom) of two scenes from ScanNet.

▶ Incorrect predictions tend to have high
uncertainties.

Low-uncertainty High-uncertainty

Incorrect predictionCorrect prediction

Segmentation prediction

Segmentation error

Dense uncertainty map

[13] Uncertainty Estimation for 3D Dense Prediction via Cross-Point Embeddings. RA-L. 2023
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Uncertainty in Crowd Counting 66

Lc'

'Hard' Uncertainty 'Soft' Uncertainty

Student Model

Teacher Model

Softmax

MD

MAB

Transformation Layer

MB

P(H,W,C) LSb

ⓧ

P(H,W,C)'

LCb LCd

MD'

LSd

ξ

ξ'

Noise:

Noise:

Input

Output:
ReLu

Softmax

ReLuⓧ

VGG-16

VGG-16

Unlabeled Data Flow

Labeled Data Flow

CNN Blocks
MD : Density Map

MB : Binary Segmentation

MAB : Approximated Segmentation 

P(H,W,C) : Class Score of Student Model

P(H,W,C)' : Class Score of Teacher Model 
LSd : Supervised Density Loss
LSb: Supervised Segmentation Loss
LCd : Unsupervised Consistency Loss 
　　　　　on Density Map
LCb : Unsupervised Consistency Loss 
                  on Segmentation 
Lc' : Inherent Consistency Loss
ⓧ : Hadamard Product

Figure: The pipeline of our uncertainty-aware framework for semi-supervised crowd counting.

Jump to outline

[13] Spatial Uncertainty-Aware Semi-Supervised Crowd Counting. ICCV2021
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Reliability through Runtime Data 67

▶ Software reliability: the probability of failure-free software operation for a specified
period of time in a specified environment

Approach: a reliability assessment model to construct probabilistic safety argument by
deriving reliability requirements from low-level ML functionalities
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Reliability Assessment Model (RAM) 68

A RAM built upon statistical testing evidence, while inspired by conventional
partition-based testing and operational profile (OP)-based testing

Reliability = Generalisation× Local Robustness/Safety/Security/... (3)

Specifically,

λ :=

∫
x∈Rs1

I{x causes a misclassification}(x)Op(x) dx , (4)

where x is an input in the input domain Rs1 , and IS(x) is an indicator function—it is
equal to 1 when S is true and equal to 0 otherwise. The function Op(x) returns the
probability that x is the next random input.

[47] A safety framework for critical systems utilising deep neural networks. SafeCOMP2020.
[48] Assessing Reliability of Deep Learning Through Robustness Evaluation and Operational Testing.
AISafety2021
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RAM in 4 Steps 69

▶ Partition the input space into “cells”, with the
guidance of r-separation

▶ Approximation the operational profile OP

▶ Cell robustness evaluation

▶ “Assemble” cell-wise estimates for reliability
λ =

∑m
i=1Opiλi. Then we can have the mean

and variance of λ

[14] Reliability Assessment and Safety Arguments for Machine
Learning Components in System Assurance. ACM trans. Em-
bedded Syst. 2022.

* Won SIEMENS AI-DA (AI Dependability Assessment) Chal-

lenge “most original approach”
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Autonomous Underwater Vehicle (AUV) Case Study 70

▶ An autonomous
inspection/survey
mission with several
waypoints and docking

▶ 6 simulated objects per
mission: pipe, barrel,
dock-cage, etc

▶ the mission is subject
to dynamic noise
factors

[49] Reliability Assessment and Safety Arguments for Machine Learning Components in System

Assurance. ACM Trans. Embedded Computing Systems, 2022.
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RAM for Deep Reinforcement Learning Motion Planning 71

[17] Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems

through Probabilistic Model Checking. IROS2022.
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RAM for Deep Reinforcement Learning Motion Planning 72

0 K
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[17] Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems

through Probabilistic Model Checking. IROS2022.
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RAM for Deep Reinforcement Learning Motion Planning 73

[17] Dependability Analysis of Deep Reinforcement Learning based Robotics and Autonomous Systems

through Probabilistic Model Checking. IROS2022.
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Reachability Verification Based RAM 74

[19] Reachability Verification Based Reliability Assessment for Deep Reinforcement Learning

Controlled Robotics and Autonomous Systems. RA-L, 2024.
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Reachability Verification Based RAM 75

[19] Reachability Verification Based Reliability Assessment for Deep Reinforcement Learning

Controlled Robotics and Autonomous Systems. RA-L, 2024.
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Safety Assurance 76

To pull the above elements (falsification, explanation, verification, enhancement,
reliability) together, we use

▶ Safety assurance: processes that function systematically to ensure the
performance and effectiveness of safety risk controls and that the organization
meets or exceeds its safety objectives through the collection, analysis, and
assessment of information
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A Safety Argument Framework 77

Jump to outline

[14] Reliability Assessment and Safety Arguments for Machine Learning Components in System
Assurance. ACM trans. Embedded Syst. 2022.
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What we have learned so far? 79

▶ There is no single tool/method that can work for the certification of deep learning

▶ None of the F.E.V.E.R. has been sophisticated – many to be done for not only
individual analysis techniques but also the interfacing between them

▶ More than one properties to work with – probably an expressive formal language
with a model checking algorithm will help.

Jump to outline
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Looking ahead: distributed/federated learning 80

▶ systems are more complex: topology,
communication, etc

▶ more attackers: Byzantine attacker, etc

▶ more problems: convergence, etc.

▶ more trade-offs: model vs data, privacy
vs security, etc

[18] Decentralised and Cooperative Control of Multi-Robot Systems through Distributed Optimisation.
AAMAS2023



83.51%

Looking ahead: distributed/federated learning 81
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Looking ahead: distributed/federated learning 82

Require techniques:

▶ Multi-Party Computation (MPC)

▶ Distributed Markovian Switching topology
Jump to outline

[16] Privacy-Preserving Distributed Learning for Residential Short-Term Load Forecasting. IEEE

Internet of Things Journal, 2024.
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Looking ahead: large Language models 83

[28] A Survey of Safety and Trustworthiness of Large Language Models through the Lens of

Verification and Validation. ArXiv, 2023



86.6%

Vulnerabilities of LLMs 84

Figure: Harmfulness

and many others.

Figure: Hallucinations
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Verification Framework for large Language models 85

[28] A Survey of Safety and Trustworthiness of Large Language Models through the Lens of

Verification and Validation, ArXiv, 2023
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Guardrails: Runtime Detection and Enforcement 86

▶ hard to analyse as white-box

▶ needs safeguard in run-time

This requires

▶ multi-disciplinary approach to
determine properties,

▶ whole system thinking to
resolve conflicts, and

▶ verification and validation to
ensure rigor.

[15]: Building Guardrails for Large Language Models, ICML2024
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Runtime Monitoring 87

Jump to outline

[26]: Towards Large Language Model-Based Sentinel Against Red-Teaming, ArXiv, 2024
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Looking ahead: Sustainability 88

[28] A Survey of Safety and Trustworthiness of Large Language Models through the Lens of

Verification and Validation, ArXiv, 2023
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Looking ahead: Sustainability 89

▶ Small models
▶ Energy efficient variants of neural networks such as spiking neural networks, which

require
▶ specialised hardware implementation
▶ a complete re-investigation of the safety and trustworthiness issues?
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