
Testing Deep Neural Networks

Xiaowei Huang, University of Liverpool

Outline

Safety Problem of AI

Verification (brief)

Testing

Conclusions and Future Works

Human-Level Intelligence

Robotics and Autonomous Systems

Deep neural networks

all implemented with

Figure: safety in image classification networks

Figure: safety in natural language processing networks

Figure: safety in voice recognition networks

Figure: safety in security systems

Safety Definition: Human Driving vs. Autonomous Driving

Traffic image from “The German Traffic Sign Recognition Benchmark”

Safety Definition: Human Driving vs. Autonomous Driving

Image generated from our tool

Safety Problem: Incidents

Safety Definition: Illustration

Safety Requirements

I Pointwise Robustness (this talk)

I if the decision of a pair (input, network) is invariant with
respect to the perturbation to the input.

I Network Robustness

I or more fundamentally, Lipschitz continuity, mutual
information, etc

I model interpretability

Certification of DNN

https://github.com/TrustAI

https://github.com/TrustAI

Outline

Safety Problem of AI

Verification (brief)

Testing

Conclusions and Future Works

Safety Definition: Traffic Sign Example

Maximum Safe Radius

Definition
The maximum safe radius problem is to compute the minimum
distance from the original input α to an adversarial example, i.e.,

MSR(α) = min
α′∈D
{||α− α′||k | α′ is an adversarial example} (1)

Existing Approaches

I layer-by-layer exhaustive search, see e.g., [2]1

I SMT, MILP, SAT based constraint solving, see e.g., [3]2

I global optimisation, see e.g., [6]3

I abstract interpretation, see e.g., [1]4

1Huang, Kwiatkowska, Wang, Wu, CAV2017
2Katz, Barrett, Dill, Julian, Kochenderfer, CAV2017
3Ruan, Huang, Kwiatkowska, IJCAI2018
4Gehr, Mirman, Drachsler-Cohen, Tsankov, Chaudhuri, Vechev, S&P2018

Outline

Safety Problem of AI

Verification (brief)

Testing
Test Coverage Criteria
Test Case Generation

Conclusions and Future Works

Deep Neural Networks (DNNs)

v1,1

v1,2

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sK uK ,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w , b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

Deep Neural Networks (DNNs)

v1,1

v1,2

u4,1

u4,2

Hidden
layer

Hidden
layer

Input
layer

Output
layer

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

label = argmax1≤l≤sK uK ,l

1) neuron activation value

uk,i = bk,i +
∑

1≤h≤sk−1

wk−1,h,i · vk−1,h

weighted sum plus a bias;

w , b are parameters learned

2) rectified linear unit (ReLU):

vk,i = max{uk,i, 0}

DNN as a program

. . .

// 1) neuron a c t i v a t i o n v a l u e
uk,i = bk,i
for (unsigned h = 0; h ≤ sk−1; h += 1)
{

uk,i += wk−1,h,i · vk−1,h

}

vk,i = 0

// 2) ReLU
i f (uk,i > 0)
{

vk,i = uk,i
}

. . .

Testing Framework

I Test Coverage Criteria

I Test Case Generation

Examples of Test Coverage Criteria

I Neuron coverage [5]5

I Neuron boundary coverage [4] 6

I MC/DC for DNNs [8]7

I Lipschitz continuity

5Pei, Cao, Yang, Jana, SOSP2017.
6Ma, Xu, Zhang, Sun, Xue, Li, Chen, Su, Li, Liu, Zhao, Wang, ASE2018
7Sun, Huang, Kroening, ASE2018

Neuron coverage

For any hidden neuron nk,i ,
there exists test case t ∈ T such
that the neuron nk,i is activated:
uk,i > 0.

Test coverage conditions:

{∃x .u[x]k,i > 0 |
2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk}

I ≈ statement (line) coverage

. . .

// 1) neuron a c t i v a t i o n v a l u e
uk,i = bk,i
for (unsigned h = 0; h ≤ sk−1; h += 1)
{

uk,i += wk−1,h,i · vk−1,h

}

vk,i = 0

// 2) ReLU
i f (uk,i > 0)
{

vk,i = uk,i ⇐ this line is covered

}

. . .

Neuron coverage

For any hidden neuron nk,i ,
there exists test case t ∈ T such
that the neuron nk,i is activated:
uk,i > 0.

Test coverage conditions:

{∃x .u[x]k,i > 0 |
2 ≤ k ≤ K − 1, 1 ≤ i ≤ sk}

I ≈ statement (line) coverage

. . .

// 1) neuron a c t i v a t i o n v a l u e
uk,i = bk,i
for (unsigned h = 0; h ≤ sk−1; h += 1)
{

uk,i += wk−1,h,i · vk−1,h

}

vk,i = 0

// 2) ReLU
i f (uk,i > 0)
{

vk,i = uk,i ⇐ this line is covered

}

. . .

Neuron Coverage

Problem of neuron coverage:

I too easy to reach 100% coverage

MC/DC in Software Testing

Developed by NASA and has been widely adopted in e.g., avionics
software development guidance to ensure adequate testing of
applications with the highest criticality.

Idea: if a choice can be made, all the possible factors (conditions)
that contribute to that choice (decision) must be tested.

For traditional software, both conditions and the decision are
usually Boolean variables or Boolean expressions.

MC/DC Example

Example: the decision

d ⇐⇒ ((a > 3) ∨ (b = 0)) ∧ (c 6= 4) (2)

contains the three conditions (a > 3), (b = 0) and (c 6= 4).

The following two test cases provide 100% condition coverage (i.e.,
all possibilities of the conditions are exploited):

1. (a > 3)=True, (b = 0)=True, (c 6= 4)=True, d = True

2. (a > 3)=False, (b = 0)=False, (c 6= 4)=False, d = False

MC/DC Example

Example: the decision

d ⇐⇒ ((a > 3) ∨ (b = 0)) ∧ (c 6= 4) (3)

contains the three conditions (a > 3), (b = 0) and (c 6= 4).

The following six test cases provide 100% MC/DC coverage:

1. (a > 3)=True, (b = 0)=True, (c 6= 4)=True, d = True

2. (a > 3)=False, (b = 0)=False, (c 6= 4)=False, d = False

3. (a > 3)=False, (b = 0)=False, (c 6= 4)=True, d = False

4. (a > 3)=False, (b = 0)=True, (c 6= 4)=True, d = True

5. (a > 3)=False, (b = 0)=True, (c 6= 4)=False, d = False

6. (a > 3)=True, (b = 0)=False, (c 6= 4)=True, d = True

MC/DC for DNNs – General Idea

The core idea of our criteria is to ensure that not only the presence
of a feature needs to be tested but also the effects of less complex
features on a more complex feature must be tested.

v1,1

v1,2

v4,1

v4,2

n2,1

n2,2

n2,3

n3,1

n3,2

n3,3

For example, check the impact of n2,1, n2,2, n2,3 on n3,1.

MC/DC for DNNs – Neuron Pair and Sign Change

A neuron pair (nk,i , nk+1,j) are two neurons in adjacent layers k
and k + 1 such that 1 ≤ k ≤ K − 1, 1 ≤ i ≤ sk , and 1 ≤ j ≤ sk+1.

(Sign Change of a neuron) Given a neuron nk,l and two test cases
x1 and x2, we say that the sign change of nk,l is exploited by x1

and x2, denoted as sc(nk,l , x1, x2), if sign(vk,l [x1]) 6= sign(vk,l [x2]).

MC/DC for DNNs – Value Change and Distance Change

(Value Change of a neuron) Given a neuron nk,l and two test cases
x1 and x2, we say that the value change of nk,l is exploited with
respect to a value function g by x1 and x2, denoted as
vc(g , nk,l , x1, x2), if g(uk,l [x1], uk,l [x2])=True .

MC/DC for DNNs – Sign-Sign Cover, or SS Cover

A neuron pair α = (nk,i , nk+1,j) is SS-covered by two test cases
x1, x2, denoted as covSS(α, x1, x2), if the following conditions are
satisfied by the network instances N [x1] and N [x2]:

I sc(nk,i , x1, x2);

I ¬sc(nk,l , x1, x2) for all nk,l ∈ Pk \ {i};
I sc(nk+1,j , x1, x2).

MC/DC for DNNs – Other Covering Methods

Value-Sign Cover, or VS Cover

Sign-Value Cover, or SV Cover

Value-Value Cover, or VV Cover

Relation

MN denotes the neuron coverage metric

arrows represent “weaker than” relation between metrics

Activation pattern8

Activation Pattern
I Given a concrete input x , N [x] corresponds to a linear model
C

I C represents the set of inputs following the same activation
pattern

I One DNN activation pattern corresponds to a program
execution path

I traverse of all activation patterns ⇒ formal verification
I too many patterns: e.g., 2>10,000...

8Sun, Huang, Kroening. ”Testing Deep Neural Networks.” (2018).

Safety Coverage [10]9

Definition
Let each hyper-rectangle rec contains those inputs with the same
pattern of ReLU, i.e., for all x1, x2 ∈ rec we have
sign(nk,l , x1) = sign(nk,l , x2) for all nk,l ∈ H(N).
A hyper-rectangle rec is safe covered by a test case x , denoted as
covS(rec , x), if x ∈ rec .

9Wicker, Huang, Kwiatkowska, TACAS2018

Relation

MS denotes the safety coverage metric

Safety Coverage

Problem of safety coverage:

I exponential number of hyper-rectangles to be covered

Therefore, our MC/DC based criteria strikes the balance between
intensive testing and computational feasibility (justified by the
experimental results).

Relation with a few other criteria from [4]

I MMN : multi-section neuron coverage

I MNB : neuron boundary coverage

I MTN : top-k neuron coverage

What we can do?

I bug finding

I DNN safety statistics

I testing efficiency

I DNN internal structure analysis

Test Case Generation

I optimisation based (symbolic) approach

I concolic testing

I monte carlo tree based input mutation testing

I

Optimisation based symbolic approach

Formalising the searching of the next test case as an optimisation
problem, which can then be solved by e.g.,

I Linear Programming (LP) based, see e.g., [8]10

I Global Optimisation (GO) based, see e.g., [7]11

10Sun, Huang, Kroening. Testing Deep Neural Networks.
https://arxiv.org/abs/1803.04792

11Sun, Wu, Ruan, Huang, Kwiatkowska, Kroening, Global Robustness
Evaluation of Deep Neural Networks with Provable Guarantees for L0 Norm.
http://cn.arxiv.org/abs/1805.00089

https://arxiv.org/abs/1803.04792
http://cn.arxiv.org/abs/1805.00089

Concolic approach [9]12

Concolic testing: concrete execution + symbolic analysis

{t0}: seed input
T

R: test coverage conditions
δ: a heuristic

δ(R)

ranked
R

t, r
new

input t ′

Oracle adversarial examples

top

ranked

symbolic

analysis

12Sun, Wu, Ruan, Huang, Kwiatkowska, Kroening, ASE2018

Concrete execution (neuron coverage)

I The t, r pair is chosen by
concrete executions such
that though the specified
neuron is not activated by
t, it should be really close
to be activated.

Intuitively, to find the neuron
that is closest to be activated

I E.g., uk,i = −1.0 is ranked
higher than uk,j = −100.0

. . .

// 1) neuron a c t i v a t i o n v a l u e
uk,i = bk,i
for (unsigned h = 0; h ≤ sk−1; h += 1)

{
uk,i += wk−1,h,i · vk−1,h

}

vk,i = 0

// 2) ReLU

i f (uk,i > 0)⇐ not satisfied

{
vk,i = uk,i

}

. . .

I to select the branching
point that is most likely to
be satisfied

Concrete execution (neuron coverage)

I The t, r pair is chosen by
concrete executions such
that though the specified
neuron is not activated by
t, it should be really close
to be activated.

Intuitively, to find the neuron
that is closest to be activated

I E.g., uk,i = −1.0 is ranked
higher than uk,j = −100.0

. . .

// 1) neuron a c t i v a t i o n v a l u e
uk,i = bk,i
for (unsigned h = 0; h ≤ sk−1; h += 1)

{
uk,i += wk−1,h,i · vk−1,h

}

vk,i = 0

// 2) ReLU

i f (uk,i > 0)⇐ not satisfied

{
vk,i = uk,i

}

. . .

I to select the branching
point that is most likely to
be satisfied

Symbolic execution (neuron coverage)

Given t, r , to find a new input t ′ s.t. r is satisfied.

{u′k,i > 0 ∧ ∀k1 < k :
∧

0≤i1≤sk1

ap′k1,i1 = ap[t]k1,i1}

∧min ||t ′ − t||p ⇒ the symbolic engine

Symbolic execution (neuron coverage)

Given t, r , to find a new input t ′ s.t. r is satisfied.

{u′k,i > 0 ∧ ∀k1 < k :
∧

0≤i1≤sk1

ap′k1,i1 = ap[t]k1,i1}

∧min ||t ′ − t||p

⇒ the symbolic engine

Symbolic execution (neuron coverage)

Given t, r , to find a new input t ′ s.t. r is satisfied.

{u′k,i > 0 ∧ ∀k1 < k :
∧

0≤i1≤sk1

ap′k1,i1 = ap[t]k1,i1}

∧min ||t ′ − t||p ⇒ the symbolic engine

Symbolic execution (neuron coverage)

Given t, r , to find a new input t ′ s.t. r is satisfied.

{u′k,i > 0 ∧ ∀k1 < k :
∧

0≤i1≤sk1

ap′k1,i1 = ap[t]k1,i1}

∧min ||t ′ − t||p ⇒ the symbolic engine

I The CPLEX Linear Programming (LP) solver13

I L∞-norm: maximum difference among all pixels

I The global optimisation method 14

I L0-norm: the number of pixels that have been changed

13Sun, Huang, Kroening. Testing Deep Neural Networks.
https://arxiv.org/abs/1803.04792

14Sun, Wu, Ruan, Huang, Kwiatkowska, Kroening. Global Robustness
Evaluation of Deep Neural Networks with Provable Guarantees for L0 Norm.
http://cn.arxiv.org/abs/1805.00089

https://arxiv.org/abs/1803.04792
http://cn.arxiv.org/abs/1805.00089

Comparison with DeepXplore

DeepConcolic DeepXplore

L∞-norm L0-norm light occlusion blackout

MNIST 97.89% 97.24% 80.5% 82.5% 81.6%

CIFAR-10 89.59% 99.69% 77.9% 86.8% 89.5%

Monte carlo tree search based test case generation [10]15

15Wicker, Huang, Kwiatkowska, TACAS2018

Pixel Manipulation

define pixel manipulations δX ,i : D→ D for X ⊆ P0 a subset of
input dimensions and i ∈ I :

δX ,i (α)(x , y , z) =


α(x , y , z) + τ, if (x , y) ∈ X and i = +
α(x , y , z)− τ, if (x , y) ∈ X and i = −
α(x , y , z) otherwise

Safety Testing as Two-Player Turn-based Game

Rewards under Strategy Profile σ = (σ1, σ2)

I For terminal nodes, ρ ∈ PathFI ,

R(σ, ρ) =
1

sevα(α′ρ)

where sevα(α′) is severity of an image α′, comparing to the
original image α

I For non-terminal nodes, simply compute the reward by
applying suitable strategy σi on the rewards of the children
nodes

Players’ Objectives

The goal of the game is for player I to choose a strategy σI to
maximise the reward R((σI, σII), s0) of the initial state s0, based
on the strategy σII of the player II, i.e.,

arg max
σI

optσIIR((σI, σII), s0). (4)

where option optσII can be maxσII , minσII , or natσII , according to
which player II acts as a cooperator, an adversary, or nature who
samples the distribution G(Λ(α)) for pixels and randomly chooses
the manipulation instruction.

Outline

Safety Problem of AI

Verification (brief)

Testing

Conclusions and Future Works

Conclusions and Future Works

I Conclusions

I Testing-DNNs is a one-year old baby.
I It has attracted attentions from both the academia and the

industry.
I Both criteria and test case generation need further validations.

I Future Works

I safety problems other than robustness
I DNN specific criteria, to complement the existing ones which

borrow ideas from traditional software engineering
I more light-weight test case generation algorithms
I ...

Reference
T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.

Ai2: Safety and robustness certification of neural networks with abstract interpretation.
In 2018 IEEE Symposium on Security and Privacy (SP), volume 00, pages 948–963.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu.

Safety verification of deep neural networks.
In CAV 2017, pages 3–29, 2017.

Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer.

Reluplex: An efficient smt solver for verifying deep neural networks.
In CAV 2017, to appear, 2017.

L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu, J. Zhao, and Y. Wang.

DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems.
ArXiv e-prints, March 2018.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana.

Deepxplore: Automated whitebox testing of deep learning systems.
CoRR, abs/1705.06640, 2017.

Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska.

Reachability analysis of deep neural networks with provable guarantees.
In IJCAI-2018, 2018.

Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and Marta Kwiatkowska.

Global robustness evaluation of deep neural networks with provable guarantees for L0 norm.
CoRR, abs/1804.05805, 2018.

Youcheng Sun, Xiaowei Huang, and Daniel Kroening.

Testing deep neural networks.
In https://arxiv.org/abs/1803.04792, 2018.

Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening.

Concolic testing for deep neural networks.
CoRR, abs/1805.00089, 2018.

Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska.

Feature-guided black-box safety testing of deep neural networks.
In TACAS 2018, 2018.

	Safety Problem of AI
	Verification (brief)
	Testing
	Test Coverage Criteria
	Test Case Generation

	Conclusions and Future Works

