Testing Deep Neural Networks

Xiaowei Huang, University of Liverpool

Outline

Safety Problem of Al

Human-Level Intelligence

What can | help you with?

5::53 Tocy

Robotics and Autonomous Systems

Deep neural networks

all implemented with

hidden layer 3

hidden layer 2

hidden layer 1

input layer

ayer

output 1

BE o Signin News Sport Weather iPlayer TV Rad

NEWS

Home UK World Business | Politics Tech Science Health = Family & Education

Technology

Al image recognition fooled by single
pixel change

@ B8hoursago Technology f W @ [<« Share

Figure: safety in image classification networks

MIFICIAL INTELLIGENCE

Researcher: We Should Be Can a Machine Be Conscious? 5 Copyright Law Makes
Worried This Computer Artificial Intelligence Bias
Thought a Turtle Was a Gun Worse

Al Can Be Fooled With One
Misspelled Word

When artificial intelligence is dumb.

ﬁ: Jordan Pearson

Figure: safety in natural language processing networks

RE SOFTWARE SECURITY TRAMSFORMATION DEVCPS — BUSINESS PERSOMALTECH

Security
Drowning Dalek commands Siri in
voice-rec hack attack

Boffins embed barely-audible-to-humans commands
inside vids to fool virtual assistants

By Darren Pauli 11 Jul 2016 at 07:48 400) SHAREY

Figure: safety in voice recognition networks

v

Al vs Al: New algorithm automatically bypasses your best
cybersecurity defenses

Researchers have created an Al that tweaks malware code, and it easily bypassed an anti-malware Al
undetected. Is machine learning ready to face down cybersecurity threats?

8y Brandon Vigliarolo | August 2, 2017, 12:25 PM PST

Figure: safety in security systems

Safety Definition: Human Driving vs. Autonomous Driving

’ go right

: ~~/ or straight
NS ‘ go left or

straight

n Perception Input

T stop

go right
/ or straight

go left or
straight

n Perception Input

T stop

/2

Traffic image from “The German Traffic Sign Recognition Benchmark”

Safety Definition: Human Driving vs. Autonomous Driving

go right

~~/ or straight

go left or
straight

T stop

go right
/ or straight

go left or
straight

stop

Image generated from our tool

Safety Problem: Incidents

Woman dead
after being :

struck by,
self-driving
Uber. ...

Safety Definition: lllustration

input baper

Ridden layer 1 bidden layes 2

bikden Layer 3

go right
—» or straight
go left

or straight
™ Stop

Bidden layer 1 bidkden hayes 2

bidden Layer 3

go right
— or straight
go left

or straight
™ Stop

Safety Requirements

» Pointwise Robustness (this talk)

» if the decision of a pair (input, network) is invariant with
respect to the perturbation to the input.

» Network Robustness

» or more fundamentally, Lipschitz continuity, mutual
information, etc

» model interpretability

Certification of DNN

Deep neural network

feedback

Evaluation Report

DNN Verification
and Testing

Safety Requirements

https://github.com/TrustAl

Mathematical proof

Evaluation of Test Criteria

Assurance Case

Meodel Interpretation

1]

failed

passed

—*| Safety Certification

start deployment

https://github.com/TrustAI

Outline

Verification (brief)

Safety Definition: Traffic Sign Example

m“‘m |, 90 right
H i or straight

| , go left
or straight

Maximum Safe Radius

Definition
The maximum safe radius problem is to compute the minimum
distance from the original input « to an adversarial example, i.e.,

MSR(a) = orpelrf){Ha — /||« | @ is an adversarial example} (1)

h

Adversarial Examples

Norm Ball

Decision Boundary

/learned By DNNs

e
|

Adversarial
Examples

Decision Boundary

by Human Perception

>

Q>

Existing Approaches

> layer-by-layer exhaustive search, see e.g., [2]

» SMT, MILP, SAT based constraint solving, see e.g., [3]?
» global optimisation, see e.g., [6]

» abstract interpretation, see e.g., [1]*

Huang, Kwiatkowska, Wang, Wu, CAV2017

2Katz, Barrett, Dill, Julian, Kochenderfer, CAV2017

3Ruan, Huang, Kwiatkowska, [JCAI2018

4Gehr, Mirman, Drachsler-Cohen, Tsankov, Chaudhuri, Vechev; S&P2018

Outline

Testing
Test Coverage Criteria
Test Case Generation

Deep Neural Networks (DNNs)

Input Hidden Hidden Output

layer layer layer layer
i / \ \.4} a1
vig — O

label = argmax; < <, Uk,

Deep Neural Networks (DNNs)

Input Hidden Hidden Output
layer layer layer layer

label = argmax; < <, Uk,

1) neuron activation value

i = bt S Wko1hrViein 2) rectified linear unit (ReLU):
1<h<sx_1
weighted sum plus a bias; Vk,i = max{uk,i’ 0}

w, b are parameters learned

DNN as a program

// 1) neuron activation value

Uk,i = by,
for (unsigned h=0; h < sk_1; h+=1)
{
Uk,i += Wk—1,h,i * Vk—1,h

}
Vik,i = 0
// 2) ReLU
if (uk,i>0)
{

Vk,i = Uk,i

}

Testing Framework

» Test Coverage Criteria

» Test Case Generation

Examples of Test Coverage Criteria

v

Neuron coverage [5]°

v

Neuron boundary coverage [4] ©

v

MC/DC for DNNs [8]7

v

Lipschitz continuity

®Pei, Cao, Yang, Jana, SOSP2017.
5Ma, Xu, Zhang, Sun, Xue, Li, Chen, Su, Li, Liu, Zhao, Wang, ASE2018
"Sun, Huang, Kroening, ASE2018

Neuron coverage

For any hidden neuron ny ;,
there exists test case t € T such
that the neuron ny ; is activated:
Uk,i > 0.

Test coverage conditions:

{3x.u[x]k;i >0 |
2<k<K—-1,1<i<s)

Neuron coverage

For any hidden neuron ny ;,
there exists test case t € T such
that the neuron ny ; is activated:
Uk,i > 0.

Test coverage conditions:

{3x.u[x]k;i >0 |
2<k<K—-1,1<i<s)

» = statement (line) coverage

// 1) neuron activation value
Ug,i = by i

for (unsigned h=0; h<s,_1; h+=1)
{

Uk,i += Wk—_1,h,i * Vk—1,h

ki =0

// 2) RelLU
if (Uk7,'>0)

Vk,i = Uk,i < this line is covered

Neuron Coverage

Problem of neuron coverage:

» too easy to reach 100% coverage

MC/DC in Software Testing

Developed by NASA and has been widely adopted in e.g., avionics
software development guidance to ensure adequate testing of
applications with the highest criticality.

Idea: if a choice can be made, all the possible factors (conditions)
that contribute to that choice (decision) must be tested.

For traditional software, both conditions and the decision are
usually Boolean variables or Boolean expressions.

MC/DC Example

Example: the decision
d < ((a>3)V(b=0)A(c#4) (2)
contains the three conditions (a > 3), (b= 0) and (c # 4).

The following two test cases provide 100% condition coverage (i.e.,
all possibilities of the conditions are exploited):

1. (a > 3)=True, (b =0)=True, (c # 4)=True, d = True
2. (a > 3)=False, (b = 0)=False, (c # 4)=False, d = False

MC/DC Example

Example: the decision
d <= ((a>3)Vv(b=0))A(c#4)
contains the three conditions (a > 3), (b =0) and (c # 4).

The following six test cases provide 100% MC/DC coverage:
(a > 3)=True, (b =0)=True, (c # 4)=True, d = True
)=False, (c # 4)=False, d = False
=False, (c # 4)=True, d = False
(c # 4)=True, d = True
=True, (¢ # 4)=False, d = False
(c # 4)=True, d = True

[y

(S I E 2 B O N\
—~ N ~ —~
S}

Vv
w
~— N N S~ N
|
n
L
0
‘('D
—~ ~ —~

oy
I

(3)

MC/DC for DNNs — General Idea

The core idea of our criteria is to ensure that not only the presence
of a feature needs to be tested but also the effects of less complex
features on a more complex feature must be tested.

Vil —

Vi2 —

For example, check the impact of ny1,n22,n23 on n3 1.

MC/DC for DNNs — Neuron Pair and Sign Change

A neuron pair (ngi, nk4+1,j) are two neurons in adjacent layers k
and k+1suchthat 1 < k< K—-1,1<i<sk,and 1<) < 5541

(Sign Change of a neuron) Given a neuron ny; and two test cases
x1 and xp, we say that the sign change of ny ; is exploited by x;
and xo, denoted as sc(ng j, x1, x2), if sign(vi [x1]) # sign(vii[x2])-

!

ny

sc(na,1, T1,22) = sign(vs,1[z1]) # sign(vs,[z])

MC/DC for DNNs — Value Change and Distance Change

(Value Change of a neuron) Given a neuron ny ; and two test cases
x1 and x2, we say that the value change of ny ; is exploited with
respect to a value function g by x; and x», denoted as

ve(g, ni,i, x1, x2), if g(uk[xal, ukbe])=True .

®@ o

o/

gluz[zi] uaafme]) = 2450 > 6

MC/DC for DNNs — Sign-Sign Cover, or SS Cover

A neuron pair a = (ny. i, nk41,j) is SS-covered by two test cases
x1, x2, denoted as covsg(a, X1, X2), if the following conditions are
satisfied by the network instances NV'[x1] and NV[x]:

> sc(nk,i, X1, X2);
> —|sc(nk7/,x1,x2) for all ng € P \ {i};

> SCc(Nkt1,jy X1, X2)-

5C(W‘2,15 171=$2) .—. 5c("3,1:1'15-772)

—sc(ng,e, 1, 2)

—sc(ng,s, 1, %2)

MC/DC for DNNs — Other Covering Methods

Value-Sign Cover, or VS Cover
Sign-Value Cover, or SV Cover

Value-Value Cover, or VV Cover

Relation

[ttes) (s) Mo) M)

My denotes the neuron coverage metric

arrows represent “weaker than” relation between metrics

Activation pattern®

Activation Pattern

» Given a concrete input x, N[x] corresponds to a linear model
C

» C represents the set of inputs following the same activation
pattern

» One DNN activation pattern corresponds to a program
execution path

» traverse of all activation patterns = formal verification

> too many patterns: e.g., 2>10:000

8Sun, Huang, Kroening. " Testing Deep Neural Networks: (2018).

Safety Coverage [10]°

Definition

Let each hyper-rectangle rec contains those inputs with the same
pattern of RelLU, i.e., for all x1, x> € rec we have

sign(ny.j, x1) = sign(n s, x2) for all ng ;€ H(N).

A hyper-rectangle rec is safe covered by a test case x, denoted as
covg(rec, x), if x € rec.

Wicker, Huang, Kwiatkowska, TACAS2018

Relation

Ms denotes the safety coverage metric

Safety Coverage

Problem of safety coverage:

» exponential number of hyper-rectangles to be covered

Therefore, our MC/DC based criteria strikes the balance between
intensive testing and computational feasibility (justified by the
experimental results).

Relation with a few other criteria from [4]

[Mss | [Mvs | [Msve | [Myves]

» Mpyn: multi-section neuron coverage
» Mpyg: neuron boundary coverage

» My top-k neuron coverage

What we can do?

v

bug finding
DNN safety statistics

v

v

testing efficiency

v

DNN internal structure analysis

Test Case Generation

v

optimisation based (symbolic) approach

v

concolic testing

» monte carlo tree based input mutation testing

Optimisation based symbolic approach

Formalising the searching of the next test case as an optimisation
problem, which can then be solved by e.g.,

» Linear Programming (LP) based, see e.g., [8]°
» Global Optimisation (GO) based, see e.g., [7]'

0gyn, Huang, Kroening. Testing Deep Neural Networks.
https://arxiv.org/abs/1803.04792

1Syn, Wu, Ruan, Huang, Kwiatkowska, Kroening, Global Robustness
Evaluation of Deep Neural Networks with Provable Guarantees for LO Norm.
http://cn.arxiv.org/abs/1805.00089

https://arxiv.org/abs/1803.04792
http://cn.arxiv.org/abs/1805.00089

Concolic approach [9]*2

Concolic testing: concrete execution + symbolic analysis

fR: test coverage conditions
0: a heuristic
— ()

ranked top " symbolic new
r .
R ranked ’ analysis | input t’

{to}: seed input
_— 7'

adversarial examples

12Sun, Wu, Ruan, Huang, Kwiatkowska, Kroening, ASE2018

Concrete execution (neuron coverage)

» The t, r pair is chosen by
concrete executions such
that though the specified
neuron is not activated by
t, it should be really close
to be activated.

Intuitively, to find the neuron
that is closest to be activated

» E.g., ux; = —1.0is ranked
higher than vy ; = —100.0

Concrete execution (neuron coverage)

» The t, r pair is chosen by
concrete executions such
that though the specified
neuron is not activated by
t, it should be really close
to be activated.

Intuitively, to find the neuron
that is closest to be activated

» E.g., ux; = —1.0is ranked
higher than vy ; = —100.0

// 1) neuron activation value
Ui = bi,i
for (unsigned h=0; h < sp_1; h+=1)
{

Uk i += Wk_1 h,i * Vk—1,h

}

Vk,i =0

// 2) RelLU
if ((ug,i>0) < not satisfied

{
Vie,i = Uk,i

}

> to select the branching
point that is most likely to
be satisfied

Symbolic execution (neuron coverage)

Given t, r, to find a new input t’ s.t. r is satisfied.

{uf(’,- >0AVk < k: /\ apfm,-1 = ap[tlu.i}

0<i <s

Symbolic execution (neuron coverage)

Given t, r, to find a new input t’ s.t. r is satisfied.

{ufw- >0AVk < k: /\ apfm,-1 = ap[tlu.i}

0<i<sy,

Amin ||t — t|],

Symbolic execution (neuron coverage)

Given t, r, to find a new input t’ s.t. r is satisfied.

{uf(’,- >0AVk < k: /\ apfm,-1 = ap[tlu.i}

0<i <s

Amin||t" — t|[, = the symbolic engine

Symbolic execution (neuron coverage)

Given t,r, to find a new input t’ s.t. r is satisfied.

{up; > 0AYk <k /\ apl, i = ap[tli.i}
0<i1<sy

Amin||t" —t||, = the symbolic engine

» The CPLEX Linear Programming (LP) solver!'3
> L°°-norm: maximum difference among all pixels

» The global optimisation method

» [%-norm: the number of pixels that have been changed

Bgun, Huang, Kroening. Testing Deep Neural Networks.

https://arxiv.org/abs/1803.04792
4Syun, Wu, Ruan, Huang, Kwiatkowska, Kroening. Global Robustness

Evaluation of Deep Neural Networks with Provable Guarantees for LO Norm.
http://cn.arxiv.org/abs/1805.00089

https://arxiv.org/abs/1803.04792
http://cn.arxiv.org/abs/1805.00089

Comparison with DeepXplore

b ”%l”%! AA

‘light’ “occlusion’ “blackout’
Ongmal DeepConcollc : DeepXplore
DeepConcolic DeepXplore
Loo-norm Lg-norm | light occlusion blackout

MNIST 97.89% 97.24% | 80.5% 82.5% 81.6%
CIFAR-10 | 89.59% 99.69% | 77.9% 86.8% 89.5%

Monte carlo tree search based test case generation [10]®

BWicker, Huang, Kwiatkowska, TACAS2018

Pixel Manipulation

define pixel manipulations éx ; : D — D for X C Py a subset of
input dimensions and i € [:

alx,y,z)+ 7, if (x,y)€ X andi=+
5x7,-(a)(x,y,z): C!(X,_)/,Z)—T, if (X,y)EXand | = —
a(x,y, z) otherwise

Safety Testing as Two-Player Turn-based Game

player | player | player |

/

@S5> (-

M player Il / layer I player Il \p\aye i

Rewards under Strategy Profile o0 = (071, 02)

> For terminal nodes, p € Pathf,

1

R(o, p) = W

where sev, (o) is severity of an image o/, comparing to the
original image «

» For non-terminal nodes, simply compute the reward by
applying suitable strategy o; on the rewards of the children
nodes

Players’ Objectives

The goal of the game is for player I to choose a strategy o7 to
maximise the reward R((o1,011), 50) of the initial state sy, based
on the strategy o1 of the player 11T, i.e.,

arg rr;axothHR((UI,UII)ﬁo)- (4)
I

where option opt, can be maxy;;, mins;, or nat,,;, according to
which player IT acts as a cooperator, an adversary, or nature who
samples the distribution G(A(«)) for pixels and randomly chooses
the manipulation instruction.

Outline

Conclusions and Future Works

Conclusions and Future Works

» Conclusions

» Testing-DNNs is a one-year old baby.

> It has attracted attentions from both the academia and the
industry.

» Both criteria and test case generation need further validations.

» Future Works

» safety problems other than robustness
» DNN specific criteria, to complement the existing ones which
borrow ideas from traditional software engineering

» more light-weight test case generation algorithms
> .

Please make sure |
am doing things
right.

Thank You

Reference

@ T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.

Ai2: Safety and robustness certification of neural networks with abstract interpretation.
In 2018 IEEE Symposium on Security and Privacy (SP), volume 00, pages 948-963.

@ Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu.

Safety verification of deep neural networks.
In CAV 2017, pages 3-29, 2017.

Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer.

Reluplex: An efficient smt solver for verifying deep neural networks.
In CAV 2017, to appear, 2017.

L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu, J. Zhao, and Y. Wang.

DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems.
ArXiv e-prints, March 2018.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana.

Deepxplore: Automated whitebox testing of deep learning systems.
CoRR, abs/1705.06640, 2017

Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska.

Reachability analysis of deep neural networks with provable guarantees.

In 1JCAI-2018, 2018

Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and Marta Kwiatkowska.

Global robustness evaluation of deep neural networks with provable guarantees for LO norm.
CoRR, abs/1804.05805, 2018

Youcheng Sun, Xiaowei Huang, and Daniel Kroening.

Testing deep neural networks.
In https://arxiv.org/abs/1803.04792, 2018.

) W & W &

Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening.
Concolic testing for deep neural networks.

	Safety Problem of AI
	Verification (brief)
	Testing
	Test Coverage Criteria
	Test Case Generation

	Conclusions and Future Works

