Approximate Verification of Deep Neural Networks with Provable Guarantees

Xiaowei Huang, University of Liverpool

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

Background and Challenges

Safety Definition and Layer-by-Layer Refinement

Game-based Approach for a Single Layer Verification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Experimental Results

Human-Level Intelligence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Robotics and Autonomous Systems

Deep neural networks

all implemented with

Major problems and critiques

- un-safe, e.g., lack of robustness (this talk)
- hard to explain to human users
- ethics, trustworthiness, accountability, etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

BBC Sign in	>	News	Sport	Weather	iPlayer	т	Rad
NEWS							
Home UK World Business	Politics	Tech	Science	Health	Family &	Educat	tion
Technology		_					

Al image recognition fooled by single pixel change

🕐 8 hours ago 🛛 Technology 🥤 🥤 😭 Share

Figure: safety in image classification networks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

MOTHERBOARD

IFICIAL INTELLIGENCE

Researcher: 'We Should Be Worried' This Computer Thought a Turtle Was a Gun

Can a Machine Be Conscious?

Copyright Law Makes Artificial Intelligence Bias Worse

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

AI Can Be Fooled With One Misspelled Word

When artificial intelligence is dumb.

SHARE 🛃		TWEET	9	٧		
	Jordan Pearson Apr 28 2017, 2:00pr	n				

Figure: safety in natural language processing networks

Security

Drowning Dalek commands Siri in voice-rec hack attack

Boffins embed barely-audible-to-humans commands inside vids to fool virtual assistants

By Darren Pauli 11 Jul 2016 at 07:48

40		SHARE 🔻
----	--	---------

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Figure: safety in voice recognition networks

ARTIFICIAL INTELLIGENCE

Al vs Al: New algorithm automatically bypasses your best cybersecurity defenses

Researchers have created an AI that tweaks malware code, and it easily bypassed an anti-malware AI undetected. Is machine learning ready to face down cybersecurity threats?

By Brandon Vigliarolo | August 2, 2017, 12:25 PM PST

Figure: safety in security systems

Outline

Background and Challenges

Safety Definition and Layer-by-Layer Refinement Safety Definition Challenges Approaches

Game-based Approach for a Single Layer Verification

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Experimental Results

Certification of DNN

Deep neural network

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Safety Requirements

- Pointwise Robustness (this talk)
 - if the decision of a pair (input, network) is invariant with respect to the perturbation to the input.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Network Robustness
- or more fundamentally, Lipschitz continuity, mutual information, etc
- model interpretability

Safety Definition: Human Driving vs. Autonomous Driving

Traffic image from "The German Traffic Sign Recognition Benchmark"

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Safety Definition: Human Driving vs. Autonomous Driving

Image generated from our tool

Safety Problem: Incidents

Safety Definition: Illustration

Safety Definition: Deep Neural Networks

- \mathbb{R}^n be a vector space of inputs (points)
- *f* : ℝⁿ → *C*, where *C* is a (finite) set of class labels, models the human perception capability,
- ► a neural network classifier is a function $\hat{f}(x)$ which approximates f(x)

Safety Definition: Deep Neural Networks

A (feed-forward) neural network N is a tuple (L, T, Φ) , where

- ▶ $L = \{L_k \mid k \in \{0, ..., n\}\}$: a set of layers.
- $T \subseteq L \times L$: a set of sequential connections between layers,
- ▶ $\Phi = \{\phi_k \mid k \in \{1, ..., n\}\}$: a set of *activation functions* $\phi_k : D_{L_{k-1}} \rightarrow D_{L_k}$, one for each non-input layer.

Safety Definition: Traffic Sign Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

The maximum safe radius problem is to compute the minimum distance from the original input α to an adversarial example, i.e.,

$$MSR(\alpha) = \min_{\alpha' \in D} \{ ||\alpha - \alpha'||_k \mid \alpha' \text{ is an adversarial example} \}$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Challenges

Challenge 1: continuous space, i.e., there are an infinite number of points to be tested in the high-dimensional space

Challenge 2: The spaces are high dimensional

Challenge 3: the functions f and \hat{f} are highly non-linear, i.e., safety risks may exist in the pockets of the spaces

Challenge 4: not only heuristic search but also verification

Approach 1: Single Layer – Discretisation

Define manipulations $\delta_k : D_{L_k} \to D_{L_k}$ over the activations in the vector space of layer k.

Figure: Example of a set $\{\delta_1, \delta_2, \delta_3, \delta_4\}$ of valid manipulations in a 2-dimensional space

Exploring a Finite Number of Points

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Finite Approximation

Definition

Let $\tau \in (0, 1]$ be a manipulation magnitude. The *finite maximum* safe radius problem FMSR (τ, α) is defined over the manipulation magnitude τ (details to be given later).

Lemma For any $\tau \in (0, 1]$, we have that $MSR(\alpha) \leq FMSR(\tau, \alpha)$.

Approach 2: Single Layer – Exhaustive Search

Figure: exhaustive search (verification) vs. heuristic search

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Approach 3: Single Layer – Anytime Algorithms

Approach 4: Layer-by-Layer Refinement

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Will explain how to determine τ_0^* later.

Approach 2: Layer-by-Layer Refinement

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Approach 2: Layer-by-Layer Refinement

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background and Challenges

Safety Definition and Layer-by-Layer Refinement

Game-based Approach for a Single Layer Verification

・ロト・日本・モート モー うへぐ

Experimental Results

Preliminaries: Lipschitz network

Definition

Network N is a Lipschitz network with respect to distance function L_k if there exists a constant $\hbar_c > 0$ for every class $c \in C$ such that, for all $\alpha, \alpha' \in D$, we have

$$|N(\alpha', c) - N(\alpha, c)| \le \hbar_c \cdot ||\alpha' - \alpha||_k.$$
(2)

Most known types of layers, including fully-connected, convolutional, ReLU, maxpooling, sigmoid, softmax, etc., are Lipschitz continuous [4].

Preliminaries: Feature-Based Partitioning

Partition the input dimensions with respect to a set of features. Here, features in the simplest case can be a uniform partition, i.e., do not necessarily follow a particular method.

Useful for the reduction to two-player game, in which player One chooses a feature and player Two chooses how to manipulate the selected feature.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Preliminaries: Input Manipulation

Let $\tau > 0$ be a positive real number representing the manipulation magnitude, then we can define *input manipulation* operations $\delta_{\tau,X,i} : D \to D$ for $X \subseteq P_0$, a subset of input dimensions, and $i : P_0 \to \mathbb{N}$, an instruction function by:

$$\delta_{\tau,X,i}(\alpha)(j) = \begin{cases} \alpha(j) + i(j) * \tau, & \text{if } j \in X \\ \alpha(j), & \text{otherwise} \end{cases}$$

for all $j \in P_0$.

Approximation Based on Finite Optimisation

Definition

Let $\tau \in (0,1]$ be a manipulation magnitude. The *finite maximum* safe radius problem FMSR(τ, α) based on input manipulation is as follows:

 $\min_{\Lambda' \subseteq \Lambda(\alpha)} \min_{X \subseteq \bigcup_{\lambda \in \Lambda'}} \min_{P_{\lambda}} \min_{i \in \mathcal{I}} \{ ||\alpha - \delta_{\tau, X, i}(\alpha)||_{k} | \delta_{\tau, X, i}(\alpha) \text{ is an adv. example} \}$ (3)

Lemma

For any $\tau \in (0,1]$, we have that $MSR(\alpha) \leq FMSR(\tau, \alpha)$.

We need to determine the condition for τ to satisfy so that $FMSR(\tau, \alpha) = MSR(\alpha)$.

Grid Space

Definition

An image $\alpha' \in \eta(\alpha, L_k, d)$ is a τ -grid input if for all dimensions $p \in P_0$ we have $|\alpha'(p) - \alpha(p)| = n * \tau$ for some $n \ge 0$. Let $G(\alpha, k, d)$ be the set of τ -grid inputs in $\eta(\alpha, L_k, d)$.

misclassification aggregator

Definition

An input $\alpha_1 \in \eta(\alpha, L_k, d)$ is a misclassification aggregator with respect to a number $\beta > 0$ if, for any $\alpha_2 \in \eta(\alpha_1, L_k, \beta)$, we have that $N(\alpha_2) \neq N(\alpha)$ implies $N(\alpha_1) \neq N(\alpha)$.

Lemma

If all τ -grid inputs are misclassification aggregators with respect to $\frac{1}{2}d(k,\tau)$, then $MSR(k,d,\alpha,c) \geq FMSR(\tau,k,d,\alpha,c) - \frac{1}{2}d(k,\tau)$.

Conditions for Achieving Misclassification Aggregator

Given a class label c, we let

$$g(\alpha',c) = \min_{c' \in C, c' \neq c} \{N(\alpha',c) - N(\alpha',c')\}$$
(4)

be a function maintaining for an input α' the minimum confidence margin between the class c and another class $c' \neq N(\alpha')$.

Lemma

Let N be a Lipschitz network with a Lipschitz constant \hbar_c for every class $c \in C$. If

$$d(k,\tau) \le \frac{2g(\alpha',N(\alpha'))}{\max_{c \in C, c \neq N(\alpha')}(\hbar_{N(\alpha')} + \hbar_c)}$$
(5)

for all τ -grid input $\alpha' \in G(\alpha, k, d)$, then all τ -grid inputs are misclassification aggregators with respect to $\frac{1}{2}d(k, \tau)$.

Theorem

Let N be a Lipschitz network with a Lipschitz constant \hbar_c for every class $c \in C$. If

$$d(k,\tau) \leq \frac{2g(\alpha',N(\alpha'))}{\max_{c' \in C, c' \neq N(\alpha')}(\hbar_{N(\alpha')} + \hbar_{c'})}$$

for all τ -grid inputs $\alpha' \in G(\alpha, k, d)$, then we can use FMSR (τ, k, d, α, c) to estimate MSR (k, d, α, c) with an error bound $\frac{1}{2}d(k, \tau)$.

Two Player Game

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < ○

Flow of Reductions

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Outline

Background and Challenges

Safety Definition and Layer-by-Layer Refinement

Game-based Approach for a Single Layer Verification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Experimental Results

Convergence of Lower and Upper Bounds

▲ロト ▲理 ト ▲目 ト ▲目 ト ▲ 回 ト ④ ヘ () ヘ

Experimental Results: GTSRB

Image Classification Network for The German Traffic Sign Recognition Benchmark

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Total params: 571,723

Experimental Results: GTSRB

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Experimental Results: imageNet

Image Classification Network for the ImageNet dataset, a large visual database designed for use in visual object recognition software research.

Total params: 138,357,544

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Experimental Results: ImageNet

labrador to life boat

boxer to rhodesian ridgeback

rhodesian ridgeback to malinois

great pyrenees to kuvasz

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Comparison with Existing Tools on Finding Upper Bounds

	MNIST			CIFAR10 ¹				
L ₀	L ₀ Distance Time(s)		e(s)	Distance		Time(s)		
	mean	std	mean	std	mean	std	mean	std
DeepGame	6.11	2.48	4.06	1.62	2.86	1.97	5.12	3.62
CW [1]	7.07	4.91	17.06	1.80	3.52	2.67	15.61	5.84
L0-TRE [5]	10.85	6.15	0.17	0.06	2.62	2.55	0.25	0.05
DLV [2]	13.02	5.34	180.79	64.01	3.52	2.23	157.72	21.09
SafeCV [6]	27.96	17.77	12.37	7.71	9.19	9.42	26.31	78.38
JSMA [3]	33.86	22.07	3.16	2.62	19.61	20.94	0.79	1.15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Comparison with Existing Tools on Finding Upper Bounds

Figure: 'original', 'DeepGame', 'CW', 'L0-TRE', 'DLV', 'SafeCV', 'JSMA'.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comparison with Existing Tools on Finding Upper Bounds

Figure: 'original', 'DeepGame', 'CW', 'L0-TRE', 'DLV', 'SafeCV', 'JSMA'.

Nexar Traffic Challenge

Figure: Adversarial examples generated on Nexar data demonstrate a lack of robustness. (a) Green light classified as red with confidence 56% after one pixel change. (b) Green light classified as red with confidence 76% after one pixel change. (c) Red light classified as green with 90% confidence after one pixel change.

Conclusions and Future Works

- Pointwise Robustness (this talk)
- Network Robustness
- or more fundamentally, Lipschitz continuity, mutual information, etc

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

model interpretability

Reference

Nicholas Carlini and David A. Wagner.

Towards evaluating the robustness of neural networks. *CoRR*, abs/1608.04644, 2016.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu.

Safety verification of deep neural networks. In CAV 2017, pages 3–29, 2017.

Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram

Swami. The limitations of deep learning in adversarial settings. *CoRR*, abs/1511.07528, 2015.

Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska.

Reachability analysis of deep neural networks with provable guarantees. In *IJCAI-2018*, 2018.

Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and Marta Kwiatkowska. Global robustness evaluation of deep neural networks with provable guarantees for L0 norm. *CoRR*, abs/1804.05805, 2018.

Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska.

Feature-guided black-box safety testing of deep neural networks. In *TACAS 2018*, 2018.