Optimal Strategy Synthesis for Request-Response Games

Joint work with Florian Horn, Nico Wallmeier, and Wolfgang Thomas

Martin Zimmermann
Saarland University

September 26th, 2014

AVACS Meeting, Saarbrücken, Germany
You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s

1 2 3 4
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s 1 2 3 4

Q_1, Q_2, Q_3, Q_4

P_1, P_2, P_3, P_4

Q_1, Q_2, Q_3

P_2, P_3, P_4

P_1

P_3

P_4

Q_1

Q_1, Q_2, Q_3, Q_4
You move at h and have to answer every visit to Q_j by visit to P_j.

Let’s Play
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s 2 3 4
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s 3 4
You move at h and have to answer every visit to Q_j by visit to P_j.

Let’s Play
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s 3 4
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s

$1 \quad 2 \quad 4$
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Q_1, Q_2, Q_3

P_2, P_3, P_4

P_1

P_3

P_4

Q_1, Q_2

Q_1, Q_2, Q_3, Q_4
Let’s Play

You move at \(h \) and have to answer every visit to \(Q_j \) by visit to \(P_j \).
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s

Q_1, Q_2, Q_3

P_2, P_3, P_4

Q_1, Q_2, Q_3, Q_4
You move at \(h \) and have to answer every visit to \(Q_j \) by visit to \(P_j \).
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s 4

Q_1, Q_2, Q_3
Let’s Play

You move at \(h \) and have to answer every visit to \(Q_j \) by visit to \(P_j \).
You move at h and have to answer every visit to Q_j by visit to P_j.
You move at h and have to answer every visit to Q_j by visit to P_j.

Let’s Play
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s 4
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s

$1 \ 2 \ 3$
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s $1 \ 2 \ 3$
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s

Q_1, Q_2, Q_3

P_1, P_2, P_3, P_4

Q_1, Q_2

Q_1, Q_2, Q_3, Q_4
You move at h and have to answer every visit to Q_j by visit to P_j.

Let’s Play

Q_1, Q_2, Q_3

P_1, P_2, P_3, P_4

Open req’s

You move at h and have to answer every visit to Q_j by visit to P_j.

Martin Zimmermann
Saarland University
Optimal Strategy Synthesis for Request-Response Games
2/16
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s 3
You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s

2

Q_1, Q_2, Q_3

P_1, P_2, P_3, P_4

Q_1, Q_2

Q_1, Q_2, Q_3, Q_4
You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
You move at h and have to answer every visit to Q_j by visit to P_j.
You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s 1
You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

Open req’s

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.
Open req’s

You move at h and have to answer every visit to Q_j by visit to P_j.
Let’s Play

You move at h and have to answer every visit to Q_j by visit to P_j.

Open req’s

Q_1, Q_2, Q_3

P_1, P_2, P_3, P_4

Q_1, Q_2

Q_1, Q_2, Q_3, Q_4
Definitions

- Arena: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
Definitions

- **Arena:** $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- **Play:** infinite path through \mathcal{A}
Definitions

- **Arena**: \(\mathcal{A} = (V, V_0, V_1, E) \) with finite, directed graph \((V, E)\), \(V_0 \subseteq V\), and \(V_1 = V \setminus V_0\) (positions of the players).
- **Play**: infinite path through \(\mathcal{A} \)
- **Game**: \(G = (\mathcal{A}, \text{Win}) \) with set \(\text{Win} \subseteq V^\omega \) of winning plays for Player 0. Player 1 wins all other plays.
Definitions

- **Arena**: $A = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- **Play**: infinite path through A
- **Game**: $G = (A, \text{Win})$ with set $\text{Win} \subseteq V^\omega$ of winning plays for Player 0. Player 1 wins all other plays.
- **Strategy for Player 0**: $\sigma : V^* V_0 \rightarrow V$ s.t. $(v, \sigma(wv)) \in E$ for all $wv \in V^* V_0$.

Definitions

- **Arena**: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- **Play**: infinite path through \mathcal{A}
- **Game**: $G = (\mathcal{A}, \text{Win})$ with set $\text{Win} \subseteq V^\omega$ of winning plays for Player 0. Player 1 wins all other plays.
- **Strategy for Player 0**: $\sigma: V^* V_0 \rightarrow V$ s.t. $(v, \sigma(wv)) \in E$ for all $wv \in V^* V_0$.
- **ρ consistent with σ**: $\rho_{n+1} = \sigma(\rho_0 \cdots \rho_n)$ for all n s.t. $\rho_n \in V_0$.

$$\text{Beh}(v, \sigma) = \{\rho \mid \rho \text{ starting in } v, \text{ consistent with } \sigma\}$$
Definitions

- **Arena**: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- **Play**: infinite path through \mathcal{A}
- **Game**: $G = (\mathcal{A}, \text{Win})$ with set $\text{Win} \subseteq V^\omega$ of winning plays for Player 0. Player 1 wins all other plays.
- **Strategy for Player 0**: $\sigma : V^* V_0 \rightarrow V$ s.t. $(v, \sigma(wv)) \in E$ for all $wv \in V^* V_0$.
- ρ consistent with σ: $\rho_{n+1} = \sigma(\rho_0 \cdots \rho_n)$ for all n s.t. $\rho_n \in V_0$.

$$\text{Beh}(v, \sigma) = \{ \rho \mid \rho \text{ starting in } v, \text{ consistent with } \sigma \}$$

- σ winning from v for Player 0: $\text{Beh}(v, \sigma) \subseteq \text{Win}$.

Martin Zimmermann
Saarland University
Optimal Strategy Synthesis for Request-Response Games
3/16
Definitions

- **Arena**: $\mathcal{A} = (V, V_0, V_1, E)$ with finite, directed graph (V, E), $V_0 \subseteq V$, and $V_1 = V \setminus V_0$ (positions of the players).
- **Play**: infinite path through \mathcal{A}
- **Game**: $\mathcal{G} = (\mathcal{A}, \text{Win})$ with set $\text{Win} \subseteq V^\omega$ of winning plays for Player 0. Player 1 wins all other plays.
- **Strategy for Player 0**: $\sigma : V^* V_0 \to V$ s.t. $(v, \sigma(wv)) \in E$ for all $wv \in V^* V_0$.
- ρ consistent with σ: $\rho_{n+1} = \sigma(\rho_0 \cdots \rho_n)$ for all n s.t. $\rho_n \in V_0$.

\[
\text{Beh}(v, \sigma) = \{\rho \mid \rho \text{ starting in } v, \text{ consistent with } \sigma\}
\]

- σ winning from v for Player 0: $\text{Beh}(v, \sigma) \subseteq \text{Win}$.
- **Winning region of Player 0**:

\[
W_0 = \{v \mid \text{Player 0 has winning strategy from } v\} \]
Reductions and Finite-state Strategies

- Positional Strategies: move only depends on last vertex

\[\sigma(wv) = \sigma(v) \]

- Finite-state strategies: implemented by DFA with output reading play prefix \(\rho_0 \cdots \rho_n \) and outputting \(\sigma(\rho_0 \cdots \rho_n) \).

![Diagram of a DFA with states S0, S1, S2 and transitions labeled with input/output pairs 0/0, 1/1.](image-url)
RR Games

Request-response game (RR game): \((\mathcal{A}, (Q_j, P_j)_{j \in [k]})\) with

- arena \(\mathcal{A} = (V, V_0, V_1, E)\),
- \(Q_j \subseteq V\): reQuests of condition \(j\), and
- \(P_j \subseteq V\): resPonses of condition \(j\).

Theorem (Wallmeier, Hütten, Thomas '03)

RR games can be reduced to Büchi games of size \(s^2 + 1\), where \(s = |V|\).

Corollary

Finite-state winning strategies of size \(k^2 + 1\) for both players.

Solvable in Exptime.
RR Games

Request-response game (RR game): \((\mathcal{A}, (Q_j, P_j)_{j \in [k]})\) with
- arena \(\mathcal{A} = (V, V_0, V_1, E)\),
- \(Q_j \subseteq V\): requests of condition \(j\), and
- \(P_j \subseteq V\): responses of condition \(j\).
- Player 0 wins if every request is answered by corresponding response: \(\bigwedge_{j \in [k]} \mathbb{G}(Q_j \to \mathbb{F}P_j)\)
RR Games

Request-response game (RR game): \((\mathcal{A}, (Q_j, P_j)_{j \in [k]})\) with

- arena \(\mathcal{A} = (V, V_0, V_1, E)\),
- \(Q_j \subseteq V\): reQuests of condition \(j\), and
- \(P_j \subseteq V\): resPoneses of condition \(j\).
- Player 0 wins if every request is answered by corresponding response: \(\bigwedge_{j \in [k]} G(Q_j \rightarrow FP_j)\)

Theorem (Wallmeier, Hütten, Thomas ’03)

RR games can be reduced to Büchi games of size \(sk2^{k+1}\), where \(s = |V|\).
Request-response game (RR game): \((\mathcal{A}, (Q_j, P_j)_{j \in [k]}) \) with

- arena \(\mathcal{A} = (V, V_0, V_1, E) \),
- \(Q_j \subseteq V \): reRequests of condition \(j \), and
- \(P_j \subseteq V \): resPonses of condition \(j \).
- Player 0 wins if every request is answered by corresponding response: \(\bigwedge_{j \in [k]} G(Q_j \rightarrow FP_j) \)

Theorem (Wallmeier, Hütten, Thomas ’03)

RR games can be reduced to Büchi games of size \(sk2^{k+1} \), where \(s = |V| \).

Corollary

- Finite-state winning strategies of size \(k2^{k+1} \) for both players.
- Solvable in Exptime.
\[
\text{wt}_j(\varepsilon) = 0, \quad \text{and}
\]
\[
\text{wt}_j(wv) = \begin{cases}
0 & \text{if } \text{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\
1 & \text{if } \text{wt}_j(w) > 0 \text{ and } v \in P_j.
\end{cases}
\]
Waiting Times

- $\text{wt}_j(\varepsilon) = 0$, and

\[
\text{wt}_j(wv) = \begin{cases}
0 & \text{if } \text{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\
1 & \text{if } \text{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j,
\end{cases}
\]
Waiting Times

- \(wt_j(\varepsilon) = 0, \) and

\[
wt_j(wv) = \begin{cases}
0 & \text{if } wt_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\
1 & \text{if } wt_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\
0 & \text{if } wt_j(w) > 0 \text{ and } v \in P_j,
\end{cases}
\]
Waiting Times

- $\text{wt}_j(\varepsilon) = 0$, and

\[
\text{wt}_j(wv) = \begin{cases}
0 & \text{if } \text{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\
1 & \text{if } \text{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\
0 & \text{if } \text{wt}_j(w) > 0 \text{ and } v \in P_j, \\
\text{wt}_j(w) + 1 & \text{if } \text{wt}_j(w) > 0 \text{ and } v \notin P_j.
\end{cases}
\]
Waiting Times

- \(wt_j(\varepsilon) = 0 \), and

\[
wt_j(wv) = \begin{cases}
0 & \text{if } wt_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\
1 & \text{if } wt_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\
0 & \text{if } wt_j(w) > 0 \text{ and } v \in P_j, \\
wt_j(w) + 1 & \text{if } wt_j(w) > 0 \text{ and } v \notin P_j.
\end{cases}
\]

- \(\overline{wt}(w) = (wt_1(w), \ldots, wt_k(w)) \in \mathbb{N}^k \)
Waiting Times

- $\text{wt}_j(\varepsilon) = 0$, and

$$
\text{wt}_j(wv) = \begin{cases}
0 & \text{if } \text{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\
1 & \text{if } \text{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\
0 & \text{if } \text{wt}_j(w) > 0 \text{ and } v \in P_j, \\
\text{wt}_j(w) + 1 & \text{if } \text{wt}_j(w) > 0 \text{ and } v \notin P_j.
\end{cases}
$$

- $\overline{\text{wt}}(w) = (\text{wt}_1(w), \ldots, \text{wt}_k(w)) \in \mathbb{N}^k$

- $\text{val}(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=0}^{n-1} \sum_{j \in [k]} \text{wt}_j(\rho_0 \cdots \rho_{\ell})$
Waiting Times

- \(\text{wt}_j(\varepsilon) = 0 \), and

\[
\text{wt}_j(wv) = \begin{cases}
0 & \text{if } \text{wt}_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\
1 & \text{if } \text{wt}_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\
0 & \text{if } \text{wt}_j(w) > 0 \text{ and } v \in P_j, \\
\text{wt}_j(w) + 1 & \text{if } \text{wt}_j(w) > 0 \text{ and } v \notin P_j.
\end{cases}
\]

- \(\overline{\text{wt}}(w) = (\text{wt}_1(w), \ldots, \text{wt}_k(w)) \in \mathbb{N}^k \)

- \(\text{val}(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=0}^{n-1} \sum_{j \in [k]} \text{wt}_j(\rho_0 \cdots \rho_\ell) \)

- \(\text{val}(\sigma, \nu) = \sup_{\rho \in \text{Beh}(\nu,\sigma)} \text{val}(\rho) \)
Waiting Times

\[wt_j(\varepsilon) = 0, \text{ and} \]

\[wt_j(wv) = \begin{cases}
0 & \text{if } wt_j(w) = 0 \text{ and } v \notin Q_j \setminus P_j, \\
1 & \text{if } wt_j(w) = 0 \text{ and } v \in Q_j \setminus P_j, \\
0 & \text{if } wt_j(w) > 0 \text{ and } v \in P_j, \\
wt_j(w) + 1 & \text{if } wt_j(w) > 0 \text{ and } v \notin P_j.
\end{cases} \]

\[\overline{wt}(w) = (wt_1(w), \ldots, wt_k(w)) \in \mathbb{N}^k \]

\[\text{val}(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=0}^{n-1} \sum_{j \in [k]} wt_j(\rho_0 \cdots \rho_\ell) \]

\[\text{val}(\sigma, \nu) = \sup_{\rho \in \text{Beh}(\nu, \sigma)} \text{val}(\rho) \]

Goal:
Prove that optimal winning strategies exist and are computable.
Example

Winning strategy σ: answer Q_1 and Q_2 alternatingly

$\text{val}(\sigma, v) = 56$ for every v
Example

- Winning strategy σ: answer Q_1 and Q_2 alternatingly
- $\text{val}(\sigma, v) = \frac{56}{10}$ for every v
Lemma

Player 0 has a winning strategy σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} s k 2^{k+1}$ for every $v \in W_0(G)$.
Lemma

Player 0 has a winning strategy σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} sk^{2^k+1}$ for every $v \in W_0(\mathcal{G})$.

Consequence: Upper bound on value of optimal strategies.
Lemma

Player 0 has a winning strategy σ with \(\text{val}(\sigma, v) \leq \sum_{j \in [k]} s^k 2^{k+1} \)
for every $v \in W_0(\mathcal{G})$.

Consequence: Upper bound on value of optimal strategies.

Lower bounds:
Waiting Times: Upper Bounds

Lemma

Player 0 has a winning strategy σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} sk^{2^{k+1}}$ for every $v \in W_0(G)$.

Consequence: Upper bound on value of optimal strategies.

Lower bounds:
Lemma

Player 0 has a winning strategy σ *with* $\text{val}(\sigma, v) \leq \sum_{j \in [k]} sk^{2^{k+1}}$ *for every* $v \in W_0(G)$.

Consequence: Upper bound on value of optimal strategies.

Lower bounds:
- It takes 2^3 visits to h to answer Q_4.
Lemma

Player 0 has a winning strategy σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} sk^{2k+1}$ for every $v \in W_0(\mathcal{G})$.

Consequence: Upper bound on value of optimal strategies.

Lower bounds:
- It takes 2^3 visits to h to answer Q_4.
- Generalizable to k pairs.
- Lower bound 2^{k-1}
Main Theorem

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.
Main Theorem

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

1. Strategies of small value can be turned into strategies with bounded waiting times without increasing the value.
Main Theorem

Theorem
Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

1. Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.
 - This applies to optimal strategies as well.
 - Makes the search space for optimal strategies finite.
 - Involves removing parts of plays with large waiting times.
Main Theorem

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

1. Strategies of *small* value can be turned into strategies with bounded waiting times without increasing the value.
 - This applies to optimal strategies as well.
 - Makes the search space for optimal strategies finite.
 - Involves removing parts of plays with large waiting times.

2. Expand arena by keeping track of waiting time vectors up to bound from 1.). RR-values equal to mean-payoff condition.
Main Theorem

Theorem

Optimal strategies for RR games exist, are effectively computable, and finite-state.

Proof strategy:

1. Strategies of small value can be turned into strategies with bounded waiting times without increasing the value.
 - This applies to optimal strategies as well.
 - Makes the search space for optimal strategies finite.
 - Involves removing parts of plays with large waiting times.

2. Expand arena by keeping track of waiting time vectors up to bound from 1.). RR-values equal to mean-payoff condition.
 - Optimal strategy for mean-payoff yields optimal strategy for RR game.
Dickson’s Lemma

- Fix $k > 0$ and order \mathbb{N}^k componentwise: $(3, 7) \leq (7, 11)$.
Dickson’s Lemma

- Fix $k > 0$ and order \mathbb{N}^k componentwise: $(3, 7) \leq (7, 11)$.
- A partial order (D, \leq) is a well-quasi-order (WQO), if every infinite sequence $a_0a_1a_2\cdots \in D^\omega$ has two positions $m < n$ with $a_m \leq a_n$. (m, n) is called dickson pair.
Dickson’s Lemma

- Fix $k > 0$ and order \mathbb{N}^k componentwise: $(3, 7) \leq (7, 11)$.
- A partial order (D, \leq) is a well-quasi-order (WQO), if every infinite sequence $a_0 a_1 a_2 \cdots \in D^\omega$ has two positions $m < n$ with $a_m \leq a_n$. (m, n) is called a dickson pair.
 - (\mathbb{N}, \leq) is a WQO.
 - (\mathbb{Z}, \leq) is not a WQO.
 - $(2^\mathbb{N}, \subseteq)$ is not a WQO.
Dickson’s Lemma

- Fix $k > 0$ and order \mathbb{N}^k componentwise: $(3, 7) \leq (7, 11)$.
- A partial order (D, \leq) is a well-quasi-order (WQO), if every infinite sequence $a_0a_1a_2\cdots \in D^\omega$ has two positions $m < n$ with $a_m \leq a_n$. (m, n) is called dickson pair.

Lemma (Dickson ’13)

(\mathbb{N}^k, \leq) is a WQO.
Dickson’s Lemma

- Fix $k > 0$ and order \mathbb{N}^k componentwise: $(3, 7) \leq (7, 11)$.

- A partial order (D, \leq) is a well-quasi-order (WQO), if every infinite sequence $a_0a_1a_2\cdots \in D^\omega$ has two positions $m < n$ with $a_m \leq a_n$. (m, n) is called dickson pair.

Lemma (Dickson '13)

(\mathbb{N}^k, \leq) is a WQO.

However, Dickson’s Lemma does not give any bound on length of infixes without dickson pairs.
Dickson’s Lemma

- Fix $k > 0$ and order \mathbb{N}^k componentwise: $(3, 7) \leq (7, 11)$.
- A partial order (D, \leq) is a well-quasi-order (WQO), if every infinite sequence $a_0a_1a_2\cdots \in D^\omega$ has two positions $m < n$ with $a_m \leq a_n$. (m, n) is called dickson pair.

Lemma (Dickson ’13)

(\mathbb{N}^k, \leq) is a WQO.

However, Dickson’s Lemma does not give any bound on length of infixes without dickson pairs. Indeed, there is no such bound:

$$(n)\ (n - 1)\ (n - 2)\ \cdots\ (0)$$
Waiting times vectors are special:

- either increment, or
- reset to zero.
Waiting times vectors are special:
- either increment, or
- reset to zero.

Lemma

Let G be an RR game with s vertices and k RR conditions. There is a function $b(s, k) \in \mathcal{O}(2^{2s \cdot k + 2})$ such that every play infix of length $b(s, k)$ has a dickson pair.
Waiting times vectors are special:

- either increment, or
- reset to zero.

Lemma

Let G be an RR game with s vertices and k RR conditions. There is a function $b(s, k) \in \mathcal{O}(2^{s \cdot k + 2})$ such that every play infix of length $b(s, k)$ has a dickson pair.

Lemma (Czerwiński, Gogac, Kopczyński ’14)

Lower bound: $2^{2k/2}$.
We have σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} sk2^k =: b_G$ for all $v \in W_0(G)$.
Bounding the Waiting Times

We have σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} s_k 2^k =: b_G$ for all $v \in W_0(G)$.

Lemma

Let σ be s.t. $\text{val}(\sigma, v) \leq b_G$ for all $v \in W_0(G)$. There is σ' with $\text{val}(\sigma', v) \leq \text{val}(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_G + b(s, k - 1)$.
We have σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} s^j 2^k =: b_\mathcal{G}$ for all $v \in W_0(\mathcal{G})$.

Lemma

Let σ be s.t. $\text{val}(\sigma, v) \leq b_\mathcal{G}$ for all $v \in W_0(\mathcal{G})$. There is σ' with $\text{val}(\sigma', v) \leq \text{val}(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_\mathcal{G} + b(s, k - 1)$.

![Diagram](image-url)
Bounding the Waiting Times

We have σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} s k 2^k =: b_G$ for all $v \in W_0(G)$.

Lemma

Let σ be s.t. $\text{val}(\sigma, v) \leq b_G$ for all $v \in W_0(G)$. There is σ' with $\text{val}(\sigma', v) \leq \text{val}(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_G + b(s, k - 1)$.

(\bullet, \bullet): dickson pair
We have σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} sk2^k =: b_G$ for all $v \in W_0(G)$.

Lemma

Let σ be s.t. $\text{val}(\sigma, v) \leq b_G$ for all $v \in W_0(G)$. There is σ' with $\text{val}(\sigma', v) \leq \text{val}(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_G + b(s, k - 1)$.

(\bullet, \bullet): dickson pair

P_j
Bounding the Waiting Times

We have σ with $\text{val}(\sigma, v) \leq \sum_{j \in [k]} sk2^k =: b_G$ for all $v \in W_0(G)$.

Lemma

Let σ be s.t. $\text{val}(\sigma, v) \leq b_G$ for all $v \in W_0(G)$. There is σ' with $\text{val}(\sigma', v) \leq \text{val}(\sigma, v)$ for all v that uniformly bounds the waiting times for every condition j by $b_G + b(s, k - 1)$.

![Diagram showing waiting times]

$\text{wt}_j > b_G$
Mean-Payoff Games

Mean-payoff game: $G = (\mathcal{A}, w)$ with $w : E \rightarrow \{-W, \ldots, W\}$.

- Given $\rho = \rho_0 \rho_1 \rho_2 \cdots$ define value for
 - Player 0: $\nu_0(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} w(\rho_{\ell-1}, \rho_\ell)$

Theorem (Ehrenfeucht, Mycielski '79)
For every mean-payoff game there exist positional strategies σ_{opt} for Player 0 and τ_{opt} for Player 1 and values $\nu(\nu)$ such that

1. every play $\rho \in \text{Beh}(\nu, \sigma_{\text{opt}})$ satisfies $\nu_0(\rho) \leq \nu(\nu)$, and
2. every play $\rho \in \text{Beh}(\nu, \tau_{\text{opt}})$ satisfies $\nu_1(\rho) \geq \nu(\nu)$.

Strategies and values are computable in pseudo-polynomial time.
Mean-Payoff Games

Mean-payoff game: $G = (A, w)$ with $w: E \rightarrow \{-W, \ldots, W\}$.

- Given $\rho = \rho_0 \rho_1 \rho_2 \cdots$ define value for
 - Player 0: $\nu_0(\rho) = \lim \sup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} w(\rho_{\ell-1}, \rho_{\ell})$
 - Player 1: $\nu_1(\rho) = \lim \inf_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} w(\rho_{\ell-1}, \rho_{\ell})$

Theorem (Ehrenfeucht, Mycielski '79)

For every mean-payoff game there exist positional strategies σ_{opt} for Player 0 and τ_{opt} for Player 1 and values $\nu(\nu)$ such that

1. every play $\rho \in \text{Beh}(v, \sigma_{\text{opt}})$ satisfies $\nu_0(\rho) \leq \nu(v)$, and
2. every play $\rho \in \text{Beh}(v, \tau_{\text{opt}})$ satisfies $\nu_1(\rho) \geq \nu(v)$.

Strategies and values are computable in pseudo-polynomial time.
Mean-Payoff Games

Mean-payoff game: $\mathcal{G} = (\mathcal{A}, w)$ with $w: E \to \{-W, \ldots, W\}$.

- Given $\rho = \rho_0\rho_1\rho_2 \cdots$ define value for
 - Player 0: $\nu_0(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} w(\rho_{\ell-1}, \rho_{\ell})$
 - Player 1: $\nu_1(\rho) = \liminf_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} w(\rho_{\ell-1}, \rho_{\ell})$

- $-W \leq \nu_1(\rho) \leq \nu_0(\rho) \leq W$
Mean-Payoff Games

Mean-payoff game: $G = (A, w)$ with $w : E \rightarrow \{-W, \ldots, W\}$.

- Given $\rho = \rho_0 \rho_1 \rho_2 \cdots$ define value for
 - Player 0: $\nu_0(\rho) = \limsup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} w(\rho_{\ell-1}, \rho_{\ell})$
 - Player 1: $\nu_1(\rho) = \liminf_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} w(\rho_{\ell-1}, \rho_{\ell})$
- $-W \leq \nu_1(\rho) \leq \nu_0(\rho) \leq W$

Theorem (Ehrenfeucht, Mycielski ’79)

For every mean-payoff game there exist positional strategies σ_{opt} for Player 0 and τ_{opt} for Player 1 and values $\nu(\nu)$ such that

1. *every play $\rho \in \text{Beh}(\nu, \sigma_{\text{opt}})$ satisfies $\nu_0(\rho) \leq \nu(\nu)$, and*
2. *every play $\rho \in \text{Beh}(\nu, \tau_{\text{opt}})$ satisfies $\nu_1(\rho) \geq \nu(\nu)$.*

Strategies and values are computable in pseudo-polynomial time.
Mean-Payoff Games

Mean-payoff game: \(G = (A, w) \) with \(w : E \to \{-W, \ldots, W\} \).

- Given \(\rho = \rho_0\rho_1\rho_2 \cdots \) define value for
 - Player 0: \(\nu_0(\rho) = \lim \sup_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} w(\rho_{\ell-1}, \rho_{\ell}) \)
 - Player 1: \(\nu_1(\rho) = \lim \inf_{n \to \infty} \frac{1}{n} \sum_{\ell=1}^{n} w(\rho_{\ell-1}, \rho_{\ell}) \)
- \(-W \leq \nu_1(\rho) \leq \nu_0(\rho) \leq W\)

Theorem (Ehrenfeucht, Mycielski ’79)

For every mean-payoff game there exist positional strategies \(\sigma_{\text{opt}} \) for Player 0 and \(\tau_{\text{opt}} \) for Player 1 and values \(\nu(\nu) \) such that

1. every play \(\rho \in \text{Beh}(\nu, \sigma_{\text{opt}}) \) satisfies \(\nu_0(\rho) \leq \nu(\nu) \), and
2. every play \(\rho \in \text{Beh}(\nu, \tau_{\text{opt}}) \) satisfies \(\nu_1(\rho) \geq \nu(\nu) \).

Strategies and values are computable in pseudo-polynomial time.

- \(\rho \in \text{Beh}(\nu, \sigma_{\text{opt}}) \cap \text{Beh}(\nu, \tau_{\text{opt}}) \) satisfies \(\nu_0(\rho) = \nu_1(\rho) = \nu(\nu) \)
Let \(t_{\text{max}_j} = \text{val}_G + b(s, k - 1) \).
Let \(t_{\max_j} = \text{val}_G + b(s, k - 1) \).
Let \(\mathcal{A} \) be DFA that keeps track of waiting vectors as long as each coordinate \(j \) is bounded by \(t_{\max_j} \) (sink state \(\perp \)).
From RR Games to Mean-Payoff Games

- Let $t_{\text{max}} = \text{val}_G + b(s, k - 1)$.
- Let \mathcal{A} be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max} (sink state \perp).
- Take cartesian product of \mathcal{A} and \mathcal{A}.
Let $t_{\text{max}_j} = \text{val}_G + b(s, k - 1)$.

Let \mathcal{A} be DFA that keeps track of waiting vectors as long as each coordinate j is bounded by t_{max_j} (sink state \bot).

Take cartesian product of \mathcal{A} and \mathcal{A}.

Define w by $w((v, \bot), (v', \bot)) = 1 + \sum_{j \in [k]} t_{\text{max}_j}$ and

$$w((v, (t_1, \ldots, t_k)), (v', (t'_1, \ldots, t'_k))) = \sum_{j \in [k]} t_j$$
Let \(t_{\text{max}} = \text{val}_G + b(s, k - 1) \).

Let \(\mathcal{A} \) be DFA that keeps track of waiting vectors as long as each coordinate \(j \) is bounded by \(t_{\text{max}} \) (sink state \(\bot \)).

Take cartesian product of \(\mathcal{A} \) and \(\mathcal{A} \).

Define \(w \) by \(w((v, \bot), (v', \bot)) = 1 + \sum_{j \in [k]} t_{\text{max}_j} \) and

\[
\begin{align*}
w((v, (t_1, \ldots, t_k)), (v', (t'_1, \ldots, t'_k))) &= \sum_{j \in [k]} t_j \\
\end{align*}
\]

Obtain mean-payoff game \(G' = (\mathcal{A} \times \mathcal{A}, w) \).
From RR Games to Mean-Payoff Games

- Let \(t_{\text{max}_j} = \text{val}_G + b(s, k - 1) \).
- Let \(\mathcal{A} \) be DFA that keeps track of waiting vectors as long as each coordinate \(j \) is bounded by \(t_{\text{max}_j} \) (sink state \(\perp \)).
- Take cartesian product of \(\mathcal{A} \) and \(\mathcal{A} \).
- Define \(w \) by
 \[
 w((v, \perp), (v', \perp)) = 1 + \sum_{j \in [k]} t_{\text{max}_j}
 \]
 and
 \[
 w((v, (t_1, \ldots, t_k)), (v', (t'_1, \ldots, t'_k))) = \sum_{j \in [k]} t_j
 \]
- Obtain mean-payoff game \(G' = (\mathcal{A} \times \mathcal{A}, w) \).

Lemma

Let \(\rho = \rho_0\rho_1\rho_2 \cdots \) be a play in \(G \), \(\rho' \) the corresponding one in \(G' \).

1. \(\rho' \) does not reach \(\perp \): \(\text{val}(\rho) = \nu_0(\rho') < 1 + \sum_{j \in [k]} t_{\text{max}_j} \).
Let \(t_{\text{max}_j} = \text{val}_G + b(s, k - 1) \).

Let \(\mathcal{A} \) be DFA that keeps track of waiting vectors as long as each coordinate \(j \) is bounded by \(t_{\text{max}_j} \) (sink state \(\perp \)).

Take cartesian product of \(\mathcal{A} \) and \(\mathcal{A} \).

Define \(w \) by
\[
w((v, \perp), (v', \perp)) = 1 + \sum_{j \in [k]} t_{\text{max}_j}
\]
\[
w((v, (t_1, \ldots, t_k)), (v', (t'_1, \ldots, t'_k))) = \sum_{j \in [k]} t_j
\]

Obtain mean-payoff game \(G' = (\mathcal{A} \times \mathcal{A}, w) \).

Lemma

Let \(\rho = \rho_0\rho_1\rho_2 \cdots \) be a play in \(G \), \(\rho' \) the corresponding one in \(G' \).

1. \(\rho' \) does not reach \(\perp \): \(\text{val}(\rho) = \nu_0(\rho') < 1 + \sum_{j \in [k]} t_{\text{max}_j} \).
2. \(\rho' \) reaches \(\perp \): \(\nu_0(\rho') = 1 + \sum_{j \in [k]} t_{\text{max}_j} \).
Proof of Main Theorem

RR game \mathcal{G}, mean-payoff game \mathcal{G}'.

- σ uniformly bounds the waiting times in \mathcal{G} by t_{\max_j}.
- Turn into σ' for \mathcal{G}' which never reaches \bot, bounds $\nu(\nu)$ strictly below $1 + \sum_{j \in [k]} t_{\max_j}$.

Claim: σ_{opt} is optimal.

Assume $\hat{\sigma}_{\text{opt}}$ is strictly better.

Turn into $\hat{\sigma}'_{\text{opt}}$ for \mathcal{G}', which is strictly better than σ'_{opt}.

Contradiction.
Proof of Main Theorem

RR game \mathcal{G}, mean-payoff game \mathcal{G}'.

- σ uniformly bounds the waiting times in \mathcal{G} by t_{\max_j}.
- Turn into σ' for \mathcal{G}' which never reaches \bot, bounds $\nu(v)$ strictly below $1 + \sum_{j \in [k]} t_{\max_j}$.

- σ'_{opt} is optimal strategy for \mathcal{G}' (never reaches \bot).
- Turn into σ_{opt} for \mathcal{G} with bounded waiting times (as σ'_{opt} never reaches \bot).

Claim: σ_{opt} is optimal.
Proof of Main Theorem

RR game \mathcal{G}, mean-payoff game \mathcal{G}'.

- σ uniformly bounds the waiting times in \mathcal{G} by $t_{\max j}$.
- Turn into σ' for \mathcal{G}' which never reaches \bot, bounds $\nu(v)$ strictly below $1 + \sum_{j \in [k]} t_{\max j}$.

- σ'_{opt} is optimal strategy for \mathcal{G}' (never reaches \bot).
- Turn into σ_{opt} for \mathcal{G} with bounded waiting times (as σ'_{opt} never reaches \bot).

Claim: σ_{opt} is optimal.

- assume $\hat{\sigma}_{\text{opt}}$ is strictly better.
- Turn into $\hat{\sigma}'_{\text{opt}}$ for \mathcal{G}', which is strictly better than σ'_{opt}.

Contradiction.
Conclusion

Optimal strategies for RR games exist and can be effectively computed.

- But they are larger than arbitrary strategies.
- Is this avoidable or is there a price to pay for optimality?
- What about heuristics, approximation algorithms?

Same questions can be asked for other winning conditions and other combinations of quality measures.