Playing Muller Games in a Hurry

Joint work with John Fearnley, University of Warwick

Martin Zimmermann

RWTH Aachen University

September 21st, 2010

Games Workshop 2010
Oxford, United Kingdom
Motivation

We believe that infinite games might have an interest for casual living-room recreation.
Motivation

We believe that infinite games might have an interest for casual living-room recreation.

McNaughton suggests a method of keeping score to declare a winner such that

.. if the play were to continue with each [player] playing forever as he has so far, then the player declared to be the winner would be the winner of the infinite play of the game.
Motivation

We believe that infinite games might have an interest for casual living-room recreation.

McNaughton suggests a method of keeping score to declare a winner such that

.. if the play were to continue with each [player] playing forever as he has so far, then the player declared to be the winner would be the winner of the infinite play of the game.

“Winning regions should be equal”
Muller Games

A Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) consists of an arena \(G = (V, V_0, V_1, E)\) and a partition \((\mathcal{F}_0, \mathcal{F}_1)\) of \(2^V\).

Rules:

- Players move a token through the arena ad infinitum.
- Player \(i\) wins play (infinite path) iff the set of vertices visited infinitely often is in \(\mathcal{F}_i\).
A Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) consists of an arena \(G = (V, V_0, V_1, E)\) and a partition \((\mathcal{F}_0, \mathcal{F}_1)\) of \(2^V\).

Rules:
- Players move a token through the arena ad infinitum.
- Player \(i\) wins play (infinite path) iff the set of vertices visited infinitely often is in \(\mathcal{F}_i\).

Example:

\[
\mathcal{F}_0 = \{\{1, 2, 3\}, \{1\}, \{3\}\}
\]
\[
\mathcal{F}_1 = 2^{\{1,2,3\}} \setminus \mathcal{F}_0
\]
A Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) consists of an arena \(G = (V, V_0, V_1, E)\) and a partition \((\mathcal{F}_0, \mathcal{F}_1)\) of \(2^V\).

Rules:
- Players move a token through the arena ad infinitum.
- Player \(i\) wins play (infinite path) iff the set of vertices visited infinitely often is in \(\mathcal{F}_i\).

Example:

```
\begin{itemize}
  \item \(\mathcal{F}_0 = \{\{1, 2, 3\}, \{1\}, \{3\}\}\)
  \item \(\mathcal{F}_1 = 2^{\{1,2,3\}} \setminus \mathcal{F}_0\)
\end{itemize}
```
A Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) consists of an arena \(G = (V, V_0, V_1, E)\) and a partition \((\mathcal{F}_0, \mathcal{F}_1)\) of \(2^V\).

Rules:
- Players move a token through the arena ad infinitum.
- Player \(i\) wins play (infinite path) iff the set of vertices visited infinitely often is in \(\mathcal{F}_i\).

Example:

\[
\begin{align*}
\mathcal{F}_0 &= \{\{1, 2, 3\}, \{1\}, \{3\}\} \\
\mathcal{F}_1 &= 2^{\{1,2,3\}} \setminus \mathcal{F}_0
\end{align*}
\]
A Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) consists of an arena \(G = (V, V_0, V_1, E)\) and a partition \((\mathcal{F}_0, \mathcal{F}_1)\) of \(2^V\).

Rules:
- Players move a token through the arena ad infinitum.
- Player \(i\) wins play (infinite path) iff the set of vertices visited infinitely often is in \(\mathcal{F}_i\).

Example:

\[
\begin{align*}
\mathcal{F}_0 &= \{\{1, 2, 3\}, \{1\}, \{3\}\} \\
\mathcal{F}_1 &= 2^{\{1,2,3\}} \setminus \mathcal{F}_0
\end{align*}
\]
A Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) consists of an arena \(G = (V, V_0, V_1, E)\) and a partition \((\mathcal{F}_0, \mathcal{F}_1)\) of \(2^V\).

Rules:
- Players move a token through the arena ad infinitum.
- Player \(i\) wins play (infinite path) iff the set of vertices visited infinitely often is in \(\mathcal{F}_i\).

Example:

\[
\begin{align*}
\mathcal{F}_0 &= \{\{1, 2, 3\}, \{1\}, \{3\}\} \\
\mathcal{F}_1 &= 2^{\{1, 2, 3\}} \setminus \mathcal{F}_0
\end{align*}
\]
Muller Games

A Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) consists of an arena \(G = (V, V_0, V_1, E)\) and a partition \((\mathcal{F}_0, \mathcal{F}_1)\) of \(2^V\).

Rules:

- Players move a token through the arena ad infinitum.
- Player \(i\) wins play (infinite path) iff the set of vertices visited infinitely often is in \(\mathcal{F}_i\).

Example:

\[
\begin{align*}
\mathcal{F}_0 &= \{\{1, 2, 3\}, \{1\}, \{3\}\} \\
\mathcal{F}_1 &= 2^{\{1,2,3\}} \setminus \mathcal{F}_0
\end{align*}
\]

Winning strategy for Player 0 (circles): coming from 1 to 2 move to 3, coming from 3 to 2 move to 1.
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max \{ k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i \}$$

where $Occ(w) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

$$score_F(w) = k \text{ iff all of } F \text{ visited } k \text{ consecutive times}$$
For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$$

where $Occ(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$$

where $\text{Occ}(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

score$_F(w) = k$ iff all of F visited k consecutive times

Example:

| w | a | a | b | b | a | a | a | b | c | a | b | c | a | a | c |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $Sc_{\{a,b\}}$ | 0 | | | | | | | | | | | | | | |
For $F \subseteq V$ define $S_c_F : V^+ \rightarrow \mathbb{N}$:

$S_c_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$

where $\text{Occ}(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_c_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t.}$$
$$x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$$

where $Occ(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

score$_F$(w) = k iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc$_{a,b}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Martin Zimmermann RWTH Aachen University Playing Muller Games in a Hurry 4/7
Scoring Functions

For $F \subseteq V$ define $S_{c_F} : V^+ \rightarrow \mathbb{N}$:

$$S_{c_F}(w) = \max\{ k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i \}$$

where $\text{Occ}(w) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

$score_{F}(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{c_{{a,b}}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max \{ k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i \}$$

where $Occ(w) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td></td>
</tr>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{ k \mid \exists \text{ exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i \}$$

where $Occ(w) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{ k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i \}$$

where $\text{Occ}(w) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$$

where $Occ(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Then $score_F(w) = k$ iff all of F visited k consecutive times.

Example:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$Sc_{{a,b}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>0 0 1 1 2 2 3 0</td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t.}
\]

$x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$

where $Occ(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k \text{ iff all of } F \text{ visited } k \text{ consecutive times}$

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $S_{c_F} : V^+ \to \mathbb{N}$:

$S_{c_F}(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$

where $\text{Occ}(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{c{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$$

where $\text{Occ}(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$$score_F(w) = k \text{ iff all of } F \text{ visited } k \text{ consecutive times}$$

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Martin Zimmermann RWTH Aachen University Playing Muller Games in a Hurry
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max \{ k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i \}$$

where $Occ(w) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$

where $Occ(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$$

where $\text{Occ}(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Sc_{{a,b,c}}$</td>
<td>0</td>
</tr>
</tbody>
</table>
For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t.}
\]
$$

$$x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}
$$

where $\text{Occ}(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc$_{a,b}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sc$_{a,b,c}$</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$$

where $\text{Occ}(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc{a,b}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Sc{a,b,c}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$

where $Occ(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Sc_{{a,b,c}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$$

where $Occ(w) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

$score_F(w) = k$ iff all of F visited k consecutive times

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Sc_{{a,b,c}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Finite-time Muller Games

Two properties of the scoring functions (informal versions):

1. If you play long enough, some score value will be high.
2. At most one score value can increase at a time.
Finite-time Muller Games

Two properties of the scoring functions (informal versions):

1. If you play long enough, some score value will be high.
2. At most one score value can increase at a time.

Definition

Finite-time Muller game: \((\mathcal{G}, \mathcal{F}_0, \mathcal{F}_1, k)\) with threshold \(k \geq 2\).

Rules:

- Players move a token through the arena.
- Stop play \(w\) as soon as score of \(k\) is reached for the first time.
- There is a unique \(F\) such that \(S_{CF}(w) = k\) (see above).
- Player \(i\) wins \(w\) iff \(F \in \mathcal{F}_i\).

Martin Zimmermann
RWTH Aachen University
Playing Muller Games in a Hurry
McNaughton’s version: stop play when some S_{CF} reaches $|F|! + 1$.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton’s finite-time Muller game coincide.
McNaughton’s version: stop play when some S_{cF} reaches $|F|! + 1$.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton’s finite-time Muller game coincide.

Our result:

Theorem

The winning regions in a Muller game (G, F_0, F_1) and in the finite-time Muller game $(G, F_0, F_1, 3)$ coincide.
McNaughton’s version: stop play when some $S_{\mathcal{C}F}$ reaches $|F|! + 1$.

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton’s finite-time Muller game coincide.

Our result:

Theorem

The winning regions in a Muller game $(G, \mathcal{F}_0, \mathcal{F}_1)$ and in the finite-time Muller game $(G, \mathcal{F}_0, \mathcal{F}_1, 3)$ coincide.

Stronger statement, which implies the theorem:

Lemma

On her winning region in a Muller game, Player i can prevent her opponent from ever reaching a score of 3 for every set $F \in \mathcal{F}_{1-i}$.
Conclusion

Results:

<table>
<thead>
<tr>
<th></th>
<th>Reduction</th>
<th>McNaughton</th>
<th>here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>–</td>
<td>$</td>
<td>F</td>
</tr>
<tr>
<td>Play Length Space</td>
<td>$\leq n \cdot n! + 1$</td>
<td>$\leq (n! + 1)^n$</td>
<td>$\leq 3^n$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(n!)$</td>
<td>$O((n! + 1)^n)$</td>
<td>$O(3^n)$</td>
</tr>
</tbody>
</table>
Conclusion

Results:

<table>
<thead>
<tr>
<th></th>
<th>Reduction</th>
<th>McNaughton</th>
<th>here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>–</td>
<td>$</td>
<td>F</td>
</tr>
<tr>
<td>Play Length</td>
<td>$\leq n \cdot n! + 1$</td>
<td>$\leq (n! + 1)^n$</td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td>$O(n!)$</td>
<td>$O((n! + 1)^n)$</td>
<td>$O(3^n)$</td>
</tr>
</tbody>
</table>

Open Questions:

- Is the finite-time Muller game with threshold 2 equivalent to the original Muller game?
- Given a winning strategy for a finite-time Muller game, can we turn it into a winning strategy for the Muller game?