Playing Muller Games in a Hurry

Joint work with John Fearnley, University of Warwick

Martin Zimmermann

RWTH Aachen University

June 18th, 2010

GandALF 2010
Minori, Italy
Motivation

We believe that infinite games might have an interest for casual living-room recreation.
Motivation

We believe that infinite games might have an interest for casual living-room recreation.

McNaughton suggests a method of keeping score to declare a winner such that

.. if the play were to continue with each [player] playing forever as he has so far, then the player declared to be the winner would be the winner of the infinite play of the game.
Motivation

We believe that infinite games might have an interest for casual living-room recreation.

McNaughton suggests a method of keeping score to declare a winner such that

.. *if the play were to continue with each [player] playing forever as he has so far, then the player declared to be the winner would be the winner of the infinite play of the game.*

“*Winning regions should be equal*”
A first idea

Consider an infinite game G played on a finite graph.

- Stop a play as soon as a cycle is closed. The winner of the induced infinite play is declared to win the finite play.
- If G is positionally determined, then the winning regions of both games coincide.
A first idea

Consider an infinite game G played on a finite graph.

- Stop a play as soon as a cycle is closed. The winner of the induced infinite play is declared to win the finite play.
- If G is positionally determined, then the winning regions of both games coincide.
- This can be extended to games G that are determined with finite-state strategies: wait for a repetition of a memory state (for some fixed memory structure).
A first idea

Consider an infinite game \mathcal{G} played on a finite graph.

- Stop a play as soon as a cycle is closed. The winner of the induced infinite play is declared to win the finite play.
- If \mathcal{G} is positionally determined, then the winning regions of both games coincide.
- This can be extended to games \mathcal{G} that are determined with finite-state strategies: wait for a repetition of a memory state (for some fixed memory structure).

Drawbacks (assuming \mathcal{G} is a Muller game with n vertices):

- maximal play length: $n!$.
- need to remember $n!$ memory states.

Our goal: improve both bounds.
Outline

1. Muller Games and Scoring Functions

2. Finite-time Muller Games

3. Conclusion
Muller Games

- Arena: $G = (V, V_0, V_1, E)$ with finite, directed graph (V, E), partition (V_0, V_1) of V.
Muller Games

- Arena: $G = (V, V_0, V_1, E)$ with finite, directed graph (V, E), partition (V_0, V_1) of V.

- Muller game: $(G, \mathcal{F}_0, \mathcal{F}_1)$ with partition $(\mathcal{F}_0, \mathcal{F}_1)$ of 2^V.

- Player i wins play ρ iff $\text{Inf}(\rho) = \{v \mid \exists \omega j \text{ s.t. } \rho_j = v\} \in \mathcal{F}_i$.
Muller Games

- **Arena:** $G = (V, V_0, V_1, E)$ with finite, directed graph (V, E), partition (V_0, V_1) of V.

- **Muller game:** $(G, \mathcal{F}_0, \mathcal{F}_1)$ with partition $(\mathcal{F}_0, \mathcal{F}_1)$ of 2^V.

- Player i wins play ρ iff $\text{Inf}(\rho) = \{v | \exists \omega j \text{ s.t. } \rho_j = v\} \in \mathcal{F}_i$.

- Set of strategies for Player i: Π_i.

- Unique play started at v that is played according to $\sigma \in \Pi_i$ and $\tau \in \Pi_{1-i}$: $\text{Play}(v, \sigma, \tau)$.
Muller Games

- **Arena:** $G = (V, V_0, V_1, E)$ with finite, directed graph (V, E), partition (V_0, V_1) of V.

- **Muller game:** $(G, \mathcal{F}_0, \mathcal{F}_1)$ with partition $(\mathcal{F}_0, \mathcal{F}_1)$ of 2^V.

- Player i wins play ρ iff $\text{Inf}(\rho) = \{v \mid \exists \omega j \text{ s.t. } \rho_j = v\} \in \mathcal{F}_i$.

- Set of strategies for Player i: Π_i.

- Unique play started at v that is played according to $\sigma \in \Pi_i$ and $\tau \in \Pi_{1-i}$: $\text{Play}(v, \sigma, \tau)$.

- Winning region of Player i:

 $$W_i = \{v \in V \mid \exists \sigma \in \Pi_i \forall \tau \in \Pi_{1-i} : \text{Play}(v, \sigma, \tau) \text{ won by Player } i\}$$
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$$

where $Occ(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \to \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$$

where $Occ(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td></td>
</tr>
</tbody>
</table>
For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{ k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i \}$$

where $\text{Occ}(w_1 \cdots w_n) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max \{ k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i \}$$

where $\text{Occ}(w_1 \cdots w_n) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
For $F \subseteq V$ define $Sc_F : V^+ \to \mathbb{N}$:

$$Sc_F(w) = \max \{ k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i \}$$

where $\text{Occ}(w_1 \cdots w_n) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{ k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$$

where $\text{Occ}(w_1 \cdots w_n) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Martin Zimmermann RWTH Aachen University Playing Muller Games in a Hurry
Scoring Functions

For $F \subseteq V$ define $\text{Sc}_F : V^+ \rightarrow \mathbb{N}$:

$$\text{Sc}_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$$

where $\text{Occ}(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Sc}_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Martin Zimmermann RWTH Aachen University Playing Muller Games in a Hurry 6/15
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. }$$

$x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$

where $Occ(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc$_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Martin Zimmermann RWTH Aachen University Playing Muller Games in a Hurry 6/15
For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$$

where $\text{Occ}(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For $F \subseteq V$ define $Sc_F : V^+ \to \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \exists \text{ words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$$

where $Occ(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scoring Functions

Martin Zimmermann
RWTH Aachen University
Playing Muller Games in a Hurry
6/15
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$$

where $Occ(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For $F \subseteq V$ define $S_{C_F}: V^+ \rightarrow \mathbb{N}$:

$$S_{C_F}(w) = \max \{ k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i \}$$

where $\text{Occ}(w_1 \cdots w_n) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{C{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$$

where $\text{Occ}(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max \{ k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i \}$$

where $\text{Occ}(w_1 \cdots w_n) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Scoring Functions

For \(F \subseteq V \) define \(Sc_F : V^+ \rightarrow \mathbb{N} \):

\[
Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}
\]

where \(\text{Occ}(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\} \).

Example:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sc_{{a,b}})</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$

where $\text{Occ}(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Sc_{{a,b,c}}$</td>
<td>0</td>
</tr>
</tbody>
</table>
For $F \subseteq V$ define $S_{cF}: V^{+} \rightarrow \mathbb{N}$:

$$S_{cF}(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^{+} \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } Occ(x_i) = F \text{ for all } i\}$$

where $Occ(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{c{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$S_{c{a,b,c}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i\}$$

where $\text{Occ}(w_1 \cdots w_n) = \{v \in V \mid \exists j \text{ s.t. } w_j = v\}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc{a,b}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Sc{a,b,c}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max\{ k \mid \text{exist words } x_1, \ldots, x_k \in V^+ \text{ s.t. } x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i \}$$

where $\text{Occ}(w_1 \cdots w_n) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Sc_{{a,b,c}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Scoring Functions

For $F \subseteq V$ define $Sc_F : V^+ \rightarrow \mathbb{N}$:

$$Sc_F(w) = \max \{ k \mid \text{exist words } x_1, \cdots, x_k \in V^+ \text{ s.t. } \}
\quad x_1 \cdots x_k \text{ is suffix of } w \text{ and } \text{Occ}(x_i) = F \text{ for all } i \}$$

where $\text{Occ}(w_1 \cdots w_n) = \{ v \in V \mid \exists j \text{ s.t. } w_j = v \}$.

Example:

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sc_{{a,b}}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Sc_{{a,b,c}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Scoring Functions

For $\mathcal{F} \subseteq 2^V$ define $\text{MaxSc}_\mathcal{F} : V^+ \cup V^\omega \to \mathbb{N} \cup \{\infty\}$:

$$\text{MaxSc}_\mathcal{F}(\rho) = \max_{F \in \mathcal{F}} \max_{w \subseteq \rho} \text{Sc}_F(w)$$
Scoring Functions

For $\mathcal{F} \subseteq 2^V$ define $\text{MaxSc}_\mathcal{F} : V^+ \cup V^\omega \rightarrow \mathbb{N} \cup \{\infty\}$:

$$\text{MaxSc}_\mathcal{F}(\rho) = \max_{F \in \mathcal{F}} \max_{w \subseteq \rho} \text{Sc}_F(w)$$

Example:

$$\begin{array}{cccccccccccccc}
\text{w} & a & a & b & b & a & a & b & c & a & b & c & a & a & c \\
\hline
\text{Sc}_{\{a,b\}} & 0 & 0 & 1 & 1 & 2 & 2 & 3 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\text{Sc}_{\{a,b,c\}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\
\end{array}$$

$\mathcal{F} = \{\{a, b\}, \{a, b, c\}\}$:

$$\text{MaxSc}_\mathcal{F}(w) = 3$$
Outline

1. Muller Games and Scoring Functions

2. Finite-time Muller Games

3. Conclusion
Lemma

Every $w \in V^* \text{ with } |w| \geq k|V|$ satisfies $\text{MaxSc}_{2V}(w) \geq k$.

“If you play long enough, some score value will be high”

Lower bound: there are words w_k of length $k|V| - 1$ with $\text{MaxSc}_{2V}(w_k) < k$.
Results about Scoring

Lemma

Every \(w \in V^* \) with \(|w| \geq k|V| \) satisfies \(\text{MaxSc}_{2V}(w) \geq k \).

“If you play long enough, some score value will be high”

Lower bound: there are words \(w_k \) of length \(k|V| - 1 \) with \(\text{MaxSc}_{2V}(w_k) < k \).

Lemma (McNaughton 2000)

Let \(k, \ell \geq 2 \), let \(F, H \subseteq V \), let \(w \in V^* \) and \(s \in V \) such that \(\text{Sc}_F(w) < k \) and \(\text{Sc}_H(w) < \ell \). If \(\text{Sc}_F(ws) = k \) and \(\text{Sc}_H(ws) = \ell \), then \(F = H \).

“At most one score value can increase at a time”
Finite-time Muller Games

- Finite-time Muller game: \((G, \mathcal{F}_0, \mathcal{F}_1, k)\) with threshold \(k \geq 2\).
- Play: path \(w = w_1 \cdots w_n\) with \(\text{MaxSc}_V(w_0 \cdots w_n) = k\), but \(\text{MaxSc}_V(w_1 \cdots w_{n-1}) < k\).
- Previous Lemma yields unique \(F \subseteq V\) such that \(S_{c_F}(w) = k\). Player \(i\) wins \(w\) iff \(F \in \mathcal{F}_i\).
- Strategies and winning regions defined as usual.
Finite-time Muller Games

- Finite-time Muller game: \((G, F_0, F_1, k)\) with threshold \(k \geq 2\).
- Play: path \(w = w_1 \cdots w_n\) with \(\text{MaxSc}_2^V(w_0 \cdots w_n) = k\), but \(\text{MaxSc}_2^V(w_1 \cdots w_{n-1}) < k\).
- Previous Lemma yields unique \(F \subseteq V\) such that \(\text{Sc}_F(w) = k\). Player \(i\) wins \(w\) iff \(F \in \mathcal{F}_i\).
- Strategies and winning regions defined as usual.

McNaughton considered a different definition of a finite-time Muller game: stop play when some \(\text{Sc}_F\) reaches \(|F|! + 1\).

Theorem (McNaughton 2000)

The winning regions in a Muller game and in McNaughton’s finite-time Muller game coincide.
Main Theorem

Theorem

The winning regions in a Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) and in the finite-time Muller game \((G, \mathcal{F}_0, \mathcal{F}_1, 3)\) coincide.
Theorem

The winning regions in a Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) and in the finite-time Muller game \((G, \mathcal{F}_0, \mathcal{F}_1, 3)\) coincide.

We prove a stronger statement about winning strategies in the infinite-duration Muller game, which implies the theorem.

Lemma

Player \(i\) has a strategy \(\sigma\) for a Muller game \((G, \mathcal{F}_0, \mathcal{F}_1)\) such that \(\text{MaxSc}_{\mathcal{F}_{1-i}}(\text{Play}(v, \sigma, \tau)) \leq 2\) for every \(v \in W_i\) and every \(\tau \in \Pi_{1-i}\).
What about 2?

The bound 2 in the lemma is optimal:

Player 0 has a winning strategy, but cannot avoid score values of 2 for Player 1.

\[F_0 = \{\{1, 2, 3\}, \{1\}, \{3\}\} \]
\[F_1 = 2^{\{1, 2, 3\}} \setminus F_0 \]

One of the plays 2112 or 2332 is consistent with every winning strategy.
What about 2?

The bound 2 in the lemma is optimal:

Player 0 has a winning strategy, but cannot avoid score values of 2 for Player 1.

\[F_0 = \{\{1, 2, 3\}, \{1\}, \{3\}\} \]

\[F_1 = 2^{\{1,2,3\}} \setminus F_0 \]

One of the plays 2112 or 2332 is consistent with every winning strategy.

Consequence:

To show that the finite-time Muller game with threshold 2 is equivalent, we need other proof techniques.
Outline

1. Muller Games and Scoring Functions

2. Finite-time Muller Games

3. Conclusion
Conclusion

We have presented a finite-duration version of a Muller game that is equivalent to the original game.

- Reachability game on a tree; hence, simple algorithms are available.
- Our strategies are eager: they do not spend more time in “bad” loops than they have to.
Conclusion

We have presented a finite-duration version of a Muller game that is equivalent to the original game.

- Reachability game on a tree; hence, simple algorithms are available.
- Our strategies are eager: they do not spend more time in “bad” loops than they have to.

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Reduction</th>
<th>McNaughton</th>
<th>here</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Length</td>
<td>$\leq n \cdot n! + 1$</td>
<td>$</td>
<td>F</td>
</tr>
<tr>
<td>Space</td>
<td>$\mathcal{O}(n!)$</td>
<td>$\mathcal{O}((n! + 1)^n)$</td>
<td>$\mathcal{O}(3^n)$</td>
</tr>
</tbody>
</table>
Open Questions

- Is the finite-time Muller game with threshold 2 equivalent to the original Muller game?
- Given a winning strategy for a finite-time Muller game, can we turn it into a winning strategy for the Muller game?