Playing Pushdown Parity Games in a Hurry

Joint work with Wladimir Fridman (RWTH Aachen University)

Martin Zimmermann

University of Warsaw

September 7th, 2012

GandALF 2012
Naples, Italy
Motivation

Playing infinite games in finite time:

- **Ehrenfeucht, Mycielski**: positional determinacy of mean-payoff games.
Motivation

Playing infinite games in finite time:

- **Ehrenfeucht, Mycielski**: positional determinacy of mean-payoff games.
- **Jurdziński**: small progress measures for parity games.
- **Bernet, Janin, Walukiewicz**: permissive strategies for parity games.
- **Björklund, Sandberg, Vorobyov**: positional determinacy of parity games.
Motivation

Playing infinite games in finite time:

- **Ehrenfeucht, Mycielski**: positional determinacy of mean-payoff games.
- **Jurdziński**: small progress measures for parity games.
- **Bernet, Janin, Walukiewicz**: permissive strategies for parity games.
- **Björklund, Sandberg, Vorobyov**: positional determinacy of parity games.
- **McNaughton**: playing Muller games in finite time using so-called *scoring functions*.

Results hold only for finite arenas. What about infinite ones?
Motivation

Playing infinite games in finite time:

- **Ehrenfeucht, Mycielski**: positional determinacy of mean-payoff games.
- **Jurdziński**: small progress measures for parity games.
- **Bernet, Janin, Walukiewicz**: permissive strategies for parity games.
- **Björklund, Sandberg, Vorobyov**: positional determinacy of parity games.
- **McNaughton**: playing Muller games in finite time using so-called scoring functions.
- **Fearnley, Neider, Rabinovich, Z.**: strong bounds on McNaughton’s scoring functions: yields reduction from Muller to safety games, new memory structure, permissive strategies.
Motivation

Playing infinite games in finite time:
- **Ehrenfeucht, Mycielski**: positional determinacy of mean-payoff games.
- **Jurdziński**: small progress measures for parity games.
- **Bernet, Janin, Walukiewicz**: permissive strategies for parity games.
- **Björklund, Sandberg, Vorobyov**: positional determinacy of parity games.
- **McNaughton**: playing Muller games in finite time using so-called scoring functions.
- **Fearnley, Neider, Rabinovich, Z.**: strong bounds on McNaughton’s scoring functions: yields reduction from Muller to safety games, new memory structure, permissive strategies.

Results hold only for finite arenas. What about **infinite** ones?
Parity Games

Arena $\mathcal{A} = (V, V_0, V_1, E, v_{in})$:
- directed (possibly countable) graph (V, E).
- positions of the players: partition $\{V_0, V_1\}$ of V.
- initial vertex $v_{in} \in V$.
Parity Games

Arena \(\mathcal{A} = (V, V_0, V_1, E, v_{\text{in}}) \):

- directed (possibly countable) graph \((V, E) \).
- positions of the players: partition \(\{V_0, V_1\} \) of \(V \).
- initial vertex \(v_{\text{in}} \in V \).
Parity Games

Arena $\mathcal{A} = (V, V_0, V_1, E, v_{\text{in}})$:
- directed (possibly countable) graph (V, E).
- positions of the players: partition $\{V_0, V_1\}$ of V.
- initial vertex $v_{\text{in}} \in V$.

Parity game $G = (\mathcal{A}, \text{col})$ with $\text{col}: V \rightarrow \{0, \ldots, d\}$.
- Player 0 wins play \iff minimal color seen infinitely often even.
- (Winning / positional) strategies defined as usual.
- Player i wins G \iff she has winning strategy from v_{in}.
For $c \in \mathbb{N}$ and $w \in V^*$: $\text{Sc}_c(w)$ denotes the number of occurrences of c in the suffix of w after the last occurrence of a smaller color.

Formally: $\text{Sc}_c(\varepsilon) = 0$ and

$$
\text{Sc}_c(wv) = \begin{cases}
\text{Sc}_c(w) & \text{if } \text{col}(v) > c, \\
\text{Sc}_c(w) + 1 & \text{if } \text{col}(v) = c, \\
0 & \text{if } \text{col}(v) < c.
\end{cases}
$$
Scoring Functions for Parity Games

For $c \in \mathbb{N}$ and $w \in V^*$: $S_c(w)$ denotes the number of occurrences of c in the suffix of w after the last occurrence of a smaller color.

Remark

In a finite arena, a positional winning strategy for Player 0 bounds the scores for all odd c by $|V|$.

Corollary

In a finite arena, Player 0 wins \iff she can prevent a score of $|V| + 1$ for all odd c (safety condition).

The remark does not hold in infinite arenas:
For $c \in \mathbb{N}$ and $w \in V^*$: $S_c(w)$ denotes the number of occurrences of c in the suffix of w after the last occurrence of a smaller color.

Remark

In a finite arena, a positional winning strategy for Player 0 bounds the scores for all odd c by $|V|$.

Corollary

In a finite arena, Player 0 wins \iff she can prevent a score of $|V| + 1$ for all odd c (safety condition).
For \(c \in \mathbb{N} \) and \(w \in V^* \): \(S_{c}(w) \) denotes the number of occurrences of \(c \) in the suffix of \(w \) after the last occurrence of a smaller color.

Remark

In a finite arena, a positional winning strategy for Player 0 bounds the scores for all odd \(c \) by \(|V| \).

Corollary

In a finite arena, Player 0 wins \(\iff \) she can prevent a score of \(|V| + 1 \) for all odd \(c \) (safety condition).

The remark does not hold in infinite arenas:
Pushdown Arena

Pushdown arena $\mathcal{A} = (V, V_0, V_1, E, v_{in})$ induced by Pushdown System $\mathcal{P} = (Q, \Gamma, \Delta, q_{in})$:

- (V, E): configuration graph of \mathcal{P}.
- $\{V_0, V_1\}$ induced by partition $\{Q_0, Q_1\}$ of Q.
- $v_{in} = (q_{in}, \bot)$.
Pushdown arena $A = (V, V_0, V_1, E, v_{in})$ induced by Pushdown System $P = (Q, \Gamma, \Delta, q_{in})$:

- (V, E): configuration graph of P.
- $\{V_0, V_1\}$ induced by partition $\{Q_0, Q_1\}$ of Q.
- $v_{in} = (q_{in}, \bot)$.
Pushdown Arenas

Pushdown arena $A = (V, V_0, V_1, E, v_{\text{in}})$ induced by Pushdown System $P = (Q, \Gamma, \Delta, q_{\text{in}})$:

- (V, E): configuration graph of P.
- $\{V_0, V_1\}$ induced by partition $\{Q_0, Q_1\}$ of Q.
- $v_{\text{in}} = (q_{\text{in}}, \bot)$.

Pushdown parity game $G = (A, \text{col})$ where \text{col} is lifting of \text{col}: $Q \rightarrow \{0, \ldots, d\}$ to configurations.
w finite path starting in v_{in}:
Stairs and Stair-Scores

\(w \) finite path starting in \(v_{\text{in}} \):
- Stair in \(w \): position s. t. no subsequent position has smaller stack height (first and last position are always a stair).
- \(\text{reset}(w) \): prefix of \(w \) up to second-to-last stair.
- \(\text{lstBmp}(w) \): suffix after second-to-last stair.
Stairs and Stair-Scores

w finite path starting in v_{in}:

- **Stair in w**: position s. t. no subsequent position has smaller stack height (first and last position are always a stair).
- **reset(w)**: prefix of w up to second-to-last stair.
- **lstBmp(w)**: suffix after second-to-last stair.
For every color c, define $\text{StairSc}_c : \mathcal{V}^* \to \mathbb{N}$ by $\text{StairSc}_c(\varepsilon) = 0$ and

$$\text{StairSc}_c(w) = \begin{cases}
\text{StairSc}_c(\text{reset}(w)) & \text{if minCol(\text{lstBmp}(w))} > c, \\
\text{StairSc}_c(\text{reset}(w)) + 1 & \text{if minCol(\text{lstBmp}(w))} = c, \\
0 & \text{if minCol(\text{lstBmp}(w))} < c.
\end{cases}$$
Stairs and Stair-Scores

```
reset(\(w\))
```

```
IstBmp(\(w\))
```

<table>
<thead>
<tr>
<th>col</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Stairs and Stair-Scores

\[\text{reset}(w) \quad \text{lstBmp}(w) \]

\[\begin{array}{c}
\text{stack height} \\
\text{col:} \\
\text{StairSc}_0: \quad 2 \\
\text{StairSc}_1: \quad 2 \\
\text{StairSc}_2: \quad 0
\end{array} \]
Stairs and Stair-Scores

\[\text{reset}(w) \quad \text{lstBmp}(w) \]

\begin{align*}
\text{stack height} & \quad \text{col:} & 1 & 1 & 1 & 2 & 1 \\
\text{StairSc}_0 & \quad 2 & 2 & 2 & 0 \\
\text{StairSc}_1 & \quad 2 & 3 & 3 & 3 \\
\text{StairSc}_2 & \quad 0 & 0 & 0 & 0
\end{align*}
Main Theorem

Finite-time pushdown game: \((A, \text{col}, k)\) with pushdown arena \(A\), coloring \(\text{col}\), and \(k \in \mathbb{N} \setminus \{0\}\).

Rules:

- Play until \(\text{StairSc}_c = k\) is reached for the first time for some color \(c\) (which is unique).
- Player 0 wins \(\Leftrightarrow c\) is even.
Main Theorem

Finite-time pushdown game: \((A, \text{col}, k)\) with pushdown arena \(A\), coloring \(\text{col}\), and \(k \in \mathbb{N} \setminus \{0\}\).

Rules:

- Play until \(\text{StairSc}_c = k\) is reached for the first time for some color \(c\) (which is unique).
- Player 0 wins \(\iff c\) is even.

Let \(d = |\text{col}(V)|\).

Theorem

Let \(G = (A, \text{col})\) be a pushdown game and \(k > |Q| \cdot |\Gamma| \cdot 2^{|Q| \cdot d} \cdot d\). Player \(i\) wins \(G\) if and only if Player \(i\) wins \((A, \text{col}, k)\).

Note: \((A, \text{col}, k)\) is a reachability game in finite arena.
Proof Idea

Walukiewicz (96):

- Reduction from pushdown parity game G to parity game G' in finite arena A' (of exponential size):
- Turn winning strategy σ' for G' into winning strategy σ for G.

One can show more:
For every play prefix w in G consistent with σ, there exists play prefix w' in G' consistent with σ' such that $\text{StairSc}(w) = \text{Sc}(w')$ for every color c.

If σ' is positional winning strategy for Player i in G', then σ bounds the scores of Player $1-i$ in G by $|A'|$.

Hence, Player i wins (A,col,k), provided $k > |A'|$.
Proof Idea

Walukiewicz (96):

- Reduction from pushdown parity game \mathcal{G} to parity game \mathcal{G}' in finite arena \mathcal{A}' (of exponential size):
- Turn winning strategy σ' for \mathcal{G}' into winning strategy σ for \mathcal{G}.

One can show more:

- For every play prefix w in \mathcal{G} consistent with σ, there exists play prefix w' in \mathcal{G}' consistent with σ' such that

$$\text{StairSc}_c(w) = \text{Sc}_c(w')$$

for every color c.
Proof Idea

Walukiewicz (96):

- Reduction from pushdown parity game G to parity game G' in finite arena A' (of exponential size):
- Turn winning strategy σ' for G' into winning strategy σ for G.

One can show more:

- For every play prefix w in G consistent with σ, there exists play prefix w' in G' consistent with σ' such that

 $$\text{StairSc}_c(w) = \text{Sc}_c(w')$$ for every color c.

- If σ' is positional winning strategy for Player i in G', then σ bounds the scores of Player $1 - i$ in G by $|A'|$.
- Hence, Player i wins (A, col, k), provided $k > |A'|$.
Lower Bounds

For the first n primes p_1, \ldots, p_n: Player 0 has to reach stack height $\prod_{j=1}^n p_j > 2^n$ in the upper row; this cannot prevent the losing player from reaching exponentially high scores (in the number of states).

Martin Zimmermann
University of Warsaw
Playing Pushdown Parity Games in a Hurry
9/10
For first n primes p_1, \ldots, p_n: Player 0 has to reach stack height $\prod_{j=1}^{n} p_j > 2^n$ in upper row \Rightarrow cannot prevent losing player from reaching exponentially high scores (in the number of states).
Conclusion

Playing pushdown parity games in finite time:

- Adapt scores to stair-scores.
- Exponential threshold stair-score yields equivalent finite-duration game (reachability game in finite tree).
- (Almost) matching lower bounds on threshold stair-score.
Conclusion

Playing pushdown parity games in finite time:

- Adapt scores to stair-scores.
- Exponential threshold stair-score yields equivalent finite-duration game (reachability game in finite tree).
- (Almost) matching lower bounds on threshold stair-score.

Further research:

- Turn winning strategy for finite-duration game into winning strategy for pushdown game.
- Permissive strategies for pushdown parity games.
- Extensions to more general classes of arenas, e.g., higher-order pushdown systems.