The Complexity of Counting Models of Linear-time Temporal Logic

Joint work with Hazem Torfah

Martin Zimmermann

Saarland University

September 4th, 2014

Highlights 2014, Paris, France
Counting Complexity

- $f : \Sigma^* \to \mathbb{N}$ is in $\#P$ if there is an NP machine M such that $f(w)$ is equal to the number of accepting runs of M on w.

Remark: $f \in \#C$ implies $f(w) \in O(2^{p(|w|)})$ for some polynomial p.

We need larger counting classes.

- $f : \Sigma^* \to \mathbb{N}$ is in $\#dPspace$, if there is a nondeterministic polynomial-space Turing machine M such that $f(w)$ is equal to the number of accepting runs of M on w.

Analogously: $\#dExptime$, $\#dExpspace$, and $\#d2Exptime$.

Counting Complexity

- $f : \Sigma^* \to \mathbb{N}$ is in $\#P$ if there is an NP machine M such that $f(w)$ is equal to the number of accepting runs of M on w.

For complexity class C:

- $f : \Sigma^* \to \mathbb{N}$ is in $\#C$ if there is an NP machine M with oracle in C such that $f(w)$ is equal to the number of accepting runs of M on w.

Remark: $f \in \#C$ implies $f(w) \in O(2^{p(|w|)})$ for some polynomial p. We need larger counting classes.

- $f : \Sigma^* \to \mathbb{N}$ is in $\#dPspace$ if there is a nondeterministic polynomial-space Turing machine M such that $f(w)$ is equal to the number of accepting runs of M on w.

Analogously: $\#dExptime$, $\#dExpspace$, and $\#d2Exptime$.

Counting Complexity

- \(f : \Sigma^* \rightarrow \mathbb{N} \) is in \(\#P \) if there is an \(\text{NP} \) machine \(M \) such that \(f(w) \) is equal to the number of accepting runs of \(M \) on \(w \).

For complexity class \(C \):

- \(f : \Sigma^* \rightarrow \mathbb{N} \) is in \(\#C \) if there is an \(\text{NP} \) machine \(M \) with oracle in \(C \) such that \(f(w) \) is equal to the number of accepting runs of \(M \) on \(w \).

Remark: \(f \in \#C \) implies \(f(w) \in O(2^p(|w|)) \) for some polynomial \(p \).
Counting Complexity

- \(f : \Sigma^* \rightarrow \mathbb{N} \) is in \(\mathbb{NP} \) if there is an \(\mathbb{NP} \) machine \(\mathcal{M} \) such that \(f(w) \) is equal to the number of accepting runs of \(\mathcal{M} \) on \(w \).

For complexity class \(C \):

- \(f : \Sigma^* \rightarrow \mathbb{N} \) is in \(\#C \) if there is an \(\mathbb{NP} \) machine \(\mathcal{M} \) with oracle in \(C \) such that \(f(w) \) is equal to the number of accepting runs of \(\mathcal{M} \) on \(w \).

Remark: \(f \in \#C \) implies \(f(w) \in O(2^p(|w|)) \) for some polynomial \(p \).

We need *larger* counting classes.

- \(f : \Sigma^* \rightarrow \mathbb{N} \) is in \(\#dPSPACE \), if there is a nondeterministic polynomial-space Turing machine \(\mathcal{M} \) such that \(f(w) \) is equal to the number of accepting runs of \(\mathcal{M} \) on \(w \).
Counting Complexity

- \(f : \Sigma^* \rightarrow \mathbb{N} \) is in \(#P\) if there is an \(NP\) machine \(M\) such that \(f(w)\) is equal to the number of accepting runs of \(M\) on \(w\).

For complexity class \(C\):

- \(f : \Sigma^* \rightarrow \mathbb{N} \) is in \(#C\) if there is an \(NP\) machine \(M\) with oracle in \(C\) such that \(f(w)\) is equal to the number of accepting runs of \(M\) on \(w\).

Remark: \(f \in #C\) implies \(f(w) \in O(2^{p(|w|)})\) for some polynomial \(p\).

We need *larger* counting classes.

- \(f : \Sigma^* \rightarrow \mathbb{N} \) is in \(#dPSPACE\), if there is a nondeterministic polynomial-space Turing machine \(M\) such that \(f(w)\) is equal to the number of accepting runs of \(M\) on \(w\).

Analogously: \(#dEXPTIME\), \(#dEXPSPACE\), and \(#d2EXPTIME\).
Lemma

\#P
Lemma

$\#P \subseteq \#PSPACE$
Lemma

\[\#P \subseteq \#P_{\text{SPACE}} \subseteq \#\text{EXPTIME} \]
Lemma

\[\#P \subseteq \#PSPACE \subseteq \#EXPSPACE \subseteq \#NEXPSPACE \]
Lemma

\[\#P \subseteq \#PSPACE \subseteq \#EXPSPACE \subseteq \#\text{NEXPSPACE} \subseteq \#\text{EXPSPACE} \]
Lemma

\[\#P \subseteq \#PSPACE \subseteq \#EXPTIME \subseteq \#NEXPTIME \subseteq \#EXPSPACE \subseteq \#2EXPTIME \]
Lemma

$\#_d \text{PSPACE}$

$\#P \subseteq \#\text{PSPACE} \subseteq \#\text{EXPTIME} \subseteq \#\text{NEEXPTIME} \subseteq \#\text{EXPSPACE} \subseteq \#\text{2EXPSPACE}$
Lemma

\[\#_d PSPACE \subseteq \#_d \text{EXPTIME} \]

\[\#P \subseteq \#PSPACE \subseteq \# \text{EXPTIME} \subseteq \# \text{NEXPTIME} \subseteq \# \text{EXPSPACE} \subseteq \#2 \text{EXPTIME} \]
Lemma

\[#_d PSPACE \subseteq \#_d \text{EXPTIME} \subsetneq \#_d \text{EXPSPACE}\]

\[\#P \subseteq \#PSPACE \subseteq \# \text{EXPTIME} \subseteq \# \text{NEXPTIME} \subseteq \# \text{EXPSPACE} \subseteq \# \text{2EXPTIME}\]
Counting Complexity

Lemma

\[\#_d \text{Pspace} \subseteq \#_d \text{Exptime} \subset \#_d \text{Expspace} \subseteq \#_d 2\text{Exptime} \]

\[\# \text{P} \subseteq \# \text{Pspace} \subseteq \# \text{Exptime} \subseteq \# \text{NExptime} \subseteq \# \text{Expspace} \subseteq \# 2\text{Exptime} \]
Lemma

\[
\text{\#PSPACE} \subseteq \text{\#d Exptime} \subseteq \text{\#d Expspace} \subseteq \text{\#d 2Exptime}
\]

\[
\text{\#P} \subseteq \text{\#Pspace} \subseteq \text{\#Exptime} \subseteq \text{\#NExptime} \subseteq \text{\#Expspace} \subseteq \text{\#2Exptime}
\]
Lemma

\[
\#_dPspace \subseteq \#_dExptime \subsetneq \#dExpspace \subseteq \#d2Exptime
\]

\[
\#P \subseteq \#Pspace \subseteq \#Exptime \subseteq \#NExptime \subseteq \#Expspace \subseteq \#2Exptime
\]

Reductions:

- \(f \) is \#P-hard, if there is a polynomial time computable function \(r \) s. t. \(f(r(M, w)) \) is equal to the number of accepting runs of \(M \) on \(w \).
Lemma

$$\text{#}_d \text{Pspace} \subseteq \text{#}_d \text{Exptime} \subset \text{#}_d \text{Expspace} \subseteq \text{#}_d \text{2Exptime}$$

$$\cup \downarrow \quad \cup \downarrow \quad \cup \downarrow \quad \cup \downarrow$$

$$\text{#P} \subseteq \# \text{Pspace} \subseteq \# \text{Exptime} \subseteq \# \text{NExptime} \subseteq \# \text{Expspace} \subseteq \# \text{2Exptime}$$

Reductions:

- f is #P-hard, if there is a polynomial time computable function r s. t. $f(r(M, w))$ is equal to the number of accepting runs of M on w.
- Hardness for other classes analogously.
- Completeness as usual.
Theorem

- The following problem is \(\#P \)-complete: Given an LTL formula \(\varphi \) and a bound \(k \) (in unary), how many \(k \)-word-models does \(\varphi \) have?
Theorem

- The following problem is $\#P$-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?

- The following problem is $\#dPSPACE$-complete: Given an LTL formula φ and a bound k (in binary), how many k-word-models does φ have?
Theorem

- The following problem is \#P-complete: Given an LTL formula φ and a bound k (in unary), how many k-word-models does φ have?

- The following problem is \#dPSPACE-complete: Given an LTL formula φ and a bound k (in binary), how many k-word-models does φ have?

Lower bound: PSPACE-hardness of LTL satisfiability [SC85] made one-to-one
Counting Word-Models

Theorem

- The following problem is \(\#P \text{-complete} \): Given an LTL formula \(\varphi \) and a bound \(k \) (in unary), how many \(k \)-word-models does \(\varphi \) have?
- The following problem is \(\#dPSPACE \text{-complete} \): Given an LTL formula \(\varphi \) and a bound \(k \) (in binary), how many \(k \)-word-models does \(\varphi \) have?

Lower bound: \(PSPACE \text{-hardness of LTL satisfiability [SC85]} \) made one-to-one

Upper bound: Guess word of length \(k \) and model-check it
Theorem
The following problem is $\#_d \mathsf{EXPTIME}$-complete: Given an LTL formula φ and a bound k (in unary), how many k-tree-models does φ have?
Theorem

The following problem is \(\#_d \text{EXPTIME}-\text{complete}: \) Given an LTL formula \(\varphi \) and a bound \(k \) (in unary), how many \(k \)-tree-models does \(\varphi \) have?

- **Lower bound:**

 \[
 \begin{align*}
 c_1 & \quad c_2 \\
 2^p(n) & \quad 2^p(n) \\
 \text{left} & \quad \text{right}
 \end{align*}
 \]

 \[
 \begin{align*}
 c_{2p(n) - 1} & \quad c_{2p(n)} \\
 p(n) & \quad p(n)
 \end{align*}
 \]
Theorem
The following problem is \(\#_d \text{EXPTIME}\)-complete: Given an LTL formula \(\varphi \) and a bound \(k \) (in unary), how many \(k \)-tree-models does \(\varphi \) have?

- **Lower bound:**

- **Upper bound:** Guess tree of height \(k \) and model-check it.
Theorem
The following problem is $\#d\text{Expspace}$-hard and in $\#d2\text{Exptime}$: Given an LTL formula φ and a bound k (in binary), how many k-tree-models does φ have?
Theorem
The following problem is \#dEXPSPACE-hard and in \#d2EXPTIME: Given an LTL formula \(\varphi \) and a bound \(k \) (in binary), how many \(k \)-tree-models does \(\varphi \) have?

- **Lower bound:**

 - each inner tree has exponentially many leaves
 - tree has exponential height (thus, doubly-exponentially many inner trees)
Counting Tree-Models with Binary Bounds

Theorem

The following problem is $\#_d \text{EXPSPACE}-hard$ and in $\#_d 2 \text{EXPTIME}$: Given an LTL formula φ and a bound k (in binary), how many k-tree-models does φ have?

- **Lower bound:**

 - each inner tree has exponentially many leaves
 - tree has exponential height (thus, doubly-exponentially many inner trees)

- **Upper bound:** Guess tree of height k and model-check it
Conclusion

Overview of results:

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>words</td>
<td>(#P)-compl.</td>
<td>(#dPSPACE)-compl.</td>
</tr>
<tr>
<td>trees</td>
<td>(#dEXPTIME)-compl.</td>
<td>(#dEXPSPACE)-hard/(#d2EXPTIME)</td>
</tr>
</tbody>
</table>
Conclusion

Overview of results:

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>words</td>
<td>#P-compl.</td>
<td>(#_d\text{PSPACE-compl.})</td>
</tr>
<tr>
<td>trees</td>
<td>(#_d\text{EXPTIME-compl.})</td>
<td>(#_d\text{EXPSPACE-hard/#}_d\text{2EXPTIME})</td>
</tr>
</tbody>
</table>

Lower bounds: safety LTL, upper bounds: full LTL
Conclusion

Overview of results:

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>words</td>
<td>$#P$-compl.</td>
<td>$#_dPSPACE$-compl.</td>
</tr>
<tr>
<td>trees</td>
<td>$#_dEXPTIME$-compl.</td>
<td>$#_dEXPTIME$-hard/$#_d2EXPTIME$</td>
</tr>
</tbody>
</table>

Lower bounds: safety LTL, upper bounds: full LTL

Open problems:
- Close the gap!
Conclusion

Overview of results:

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>words</td>
<td>$#P$-compl.</td>
<td>$#_dPSPACE$-compl.</td>
</tr>
<tr>
<td>trees</td>
<td>$#_dEXPTIME$-compl.</td>
<td>$#_dEXPSPACE$-hard/$#_d2EXPTIME$</td>
</tr>
</tbody>
</table>

Lower bounds: safety LTL, upper bounds: full LTL

Open problems:

- Close the gap!
 - Lowering the upper bound: how to guess and model-check doubly-exponentially sized trees in exponential space?
Conclusion

Overview of results:

<table>
<thead>
<tr>
<th></th>
<th>unary</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>words</td>
<td>$#P$-compl.</td>
<td>$#dPSPACE$-compl.</td>
</tr>
<tr>
<td>trees</td>
<td>$#dEXPTIME$-compl.</td>
<td>$#dEXPSPACE$-hard/$#d2EXPTIME$</td>
</tr>
</tbody>
</table>

Lower bounds: safety LTL, upper bounds: full LTL

Open problems:

- Close the gap!
 - Lowering the upper bound: how to guess and model-check doubly-exponentially sized trees in exponential space?
 - Raising the lower bound: how to encode doubly-exponentially sized configurations using polynomially sized formulas? Do games help?