Visibly Linear Dynamic Logic

Joint work with Alexander Weinert (Saarland University)

Martin Zimmermann

Saarland University

September 8th, 2016

Highlights Conference, Brussels, Belgium
The Everlasting Quest for Expressiveness

- **LTL:** “Every request q is eventually answered by a response p”

 \[G(q \rightarrow F p) \]
The Everlasting Quest for Expressiveness

- **LTL**: “Every request \(q \) is eventually answered by a response \(p \)”

 \[G(q \rightarrow F p) \]

- **LDL**: “Every request \(q \) is eventually answered by a response \(p \) after an even number of steps”

 \[[true^*](q \rightarrow ((true \cdot true)^* \langle p \rangle) \]

- **VLDL**: “Every request \(q \) is eventually answered by a response \(p \) and there are never more responses than requests”

 This can be expressed using pushdown automata/context-free grammars in the guards.
The Everlasting Quest for Expressiveness

- **LTL:** “Every request \(q \) is eventually answered by a response \(p \)”
 \[G(q \rightarrow F p) \]

- **LDL:** “Every request \(q \) is eventually answered by a response \(p \) after an even number of steps”
 \[\text{[true}^*]\](q \rightarrow ((\text{true} \cdot \text{true})^*)p) \]

- **VLDL:** “Every request \(q \) is eventually answered by a response \(p \) and there are never more responses than requests”
The Everlasting Quest for Expressiveness

- **LTL**: “Every request q is eventually answered by a response p”
 \[G(q \rightarrow F p) \]

- **LDL**: “Every request q is eventually answered by a response p after an even number of steps”
 \[[\text{true}^*](q \rightarrow \langle (\text{true} \cdot \text{true})^* \rangle p) \]

- **VLDL**: “Every request q is eventually answered by a response p and there are never more responses than requests”
 This can be expressed using pushdown automata/context-free grammars in the guards.
Partition input alphabet Σ into Σ_c (calls), Σ_r (returns), and Σ_ℓ (local actions).

A visibly pushdown automaton (VPA) has to
- push when processing a call,
- pop when processing a return while the stack is non-empty (otherwise stack is unchanged), and
- leave the stack unchanged when processing a local action.

Stack height determined by input word \Rightarrow closure under union, intersection, and complement.
Visibly Pushdown Automata

Partition input alphabet Σ into Σ_c (calls), Σ_r (returns), and Σ_ℓ (local actions).

A visibly pushdown automaton (VPA) has to

- push when processing a call,
- pop when processing a return while the stack is non-empty (otherwise stack is unchanged), and
- leave the stack unchanged when processing a local action.

Stack height determined by input word \Rightarrow closure under union, intersection, and complement.

Examples:

- $a^n b^n$ is a VPL, if a is a call and b a return.
- ww^R is not a VPL.
Visibly Linear Dynamic Logic (VLDDL)

Syntax

\[\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \langle A \rangle \varphi \mid [A] \varphi \]

where \(p \in P \) ranges over atomic propositions and \(A \) ranges over VPA’s. All VPA’s have the same partition of \(2^P \) into calls, returns, and local actions.
Visibly Linear Dynamic Logic (VLDL)

Syntax

\[\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \langle A \rangle \varphi \mid [A] \varphi \]

where \(p \in P \) ranges over atomic propositions and \(A \) ranges over VPA’s. All VPA’s have the same partition of \(2^P \) into calls, returns, and local actions.

Semantics

- \(w \models \langle A \rangle \varphi \) if there exists an \(n \) such that \(w_0 \cdots w_n \) is accepted by \(A \) and \(w_n w_{n+1} w_{n+2} \cdots \models \varphi \).

- \(w \models [A] \varphi \) if for every \(n \) s.t. \(w_0 \cdots w_n \) is accepted by \(A \) we have \(w_n w_{n+1} w_{n+2} \cdots \models \varphi \).
“Every request q is eventually answered by a response p and there are never more responses than requests”:

$$[\mathcal{A}_{\text{true}}](q \rightarrow \langle \mathcal{A}_{\text{true}} \rangle p) \land [\mathcal{A}]\text{false}$$

where

- $\mathcal{A}_{\text{true}}$ accepts every input, and
- \mathcal{A} accepts every input with more responses than requests.

Both languages are visibly pushdown, if

- $\{q\}$ is a call,
- $\{p\}$ is a return, and
- \emptyset and $\{p, q\}$ are local actions.
Lemma

VLDL and non-deterministic ω-VPA are expressively equivalent.
Expressiveness

Lemma

VLDL and non-deterministic \(\omega \)-VPA are expressively equivalent.

Proof Idea

\[
\text{VLDL}
\]

\[
\text{non-deterministic} \\
\omega \text{-VPA}
\]
Expressiveness

Lemma

VLDL and non-deterministic ω-VPA are expressively equivalent.

Proof Idea

![Diagram showing the relationship between VLDL, Deterministic Stair Automata, and non-deterministic ω-VPA, with a complexity of O(2^n).]
Expressiveness

Lemma

VLDL and non-deterministic ω-VPA are expressively equivalent.

Proof Idea

\[O(2^n) \]

Deterministic Stair Automata

\[O(n^2) \]

VLDL

non-deterministic ω-VPA

[Bozelli '07]

\[O(2^n) \]

[LMS '04]
Expressiveness

Lemma

VLDL and non-deterministic ω-VPA are expressively equivalent.

Proof Idea

Deterministic Stair Automata

[O(2^n)]

non-deterministic ω-VPA

VLDL

O(n^2)

1-way Alternating Jumping Automata

O(n^2)
Expressiveness

Lemma

VLDL and non-deterministic ω-VPA are expressively equivalent.

Proof Idea

$O(2^n)$

Deterministic Stair Automata

VLDL

$O(n^2)$

1-way Alternating Jumping Automata

$O(n^2)$

non-deterministic ω-VPA

$O(2^n)$

[Bozelli '07]

[LMS '04]
“If p holds true immediately after entering module m, it shall hold immediately after the corresponding return from m as well”
“If p holds true immediately after entering module m, it shall hold immediately after the corresponding return from m as well”

VLDL:

$$[A_c](p \rightarrow \langle A_r \rangle p)$$

with

$$\begin{align*}
\Sigma_r, \uparrow A & \quad \Sigma_c, \downarrow A \quad \Sigma_\ell, \rightarrow \\
\Sigma_c, \downarrow A & \quad \Sigma_\ell, \rightarrow
\end{align*}$$

$$\begin{align*}
\Sigma_r, \uparrow A & \quad \Sigma_c, \downarrow A \quad \Sigma_\ell, \rightarrow \\
\Sigma_c, \downarrow A & \quad \Sigma_\ell, \rightarrow
\end{align*}$$

A_c

A_r
“If p holds true immediately after entering module m, it shall hold immediately after the corresponding return from m as well”

ω-VPA:
“If p holds true immediately after entering module m, it shall hold immediately after the corresponding return from m as well”

VLTL:

$$(\alpha; \text{true})|\alpha\rangle\text{false}$$

with visibly rational expression α below:

$$[(p \cup q)^* \text{call}_m [(q \Box) \cup (p \Box p)] \text{return}_m (p \cup q)^*] \Box \lor \Box (p \cup q)^*$$
Our Results

<table>
<thead>
<tr>
<th></th>
<th>validity</th>
<th>model-checking</th>
<th>infinite games</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTL</td>
<td>PSPACE</td>
<td>PSPACE</td>
<td>2\text{ExpTime}</td>
</tr>
<tr>
<td>LDL</td>
<td>PSPACE</td>
<td>PSPACE</td>
<td>2\text{ExpTime}</td>
</tr>
<tr>
<td>Logic</td>
<td>validity</td>
<td>model-checking</td>
<td>infinite games</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>LTL</td>
<td>PSpace</td>
<td>PSpace</td>
<td>2ExpTime</td>
</tr>
<tr>
<td>LDL</td>
<td>PSpace</td>
<td>PSpace</td>
<td>2ExpTime</td>
</tr>
<tr>
<td>VLDL</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>3ExpTime</td>
</tr>
<tr>
<td>VLTL</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>$?$</td>
</tr>
</tbody>
</table>
Our Results

<table>
<thead>
<tr>
<th>Logic</th>
<th>validity</th>
<th>model-checking</th>
<th>infinite games</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTL</td>
<td>PSPACE</td>
<td>PSPACE</td>
<td>2ExpTime</td>
</tr>
<tr>
<td>LDL</td>
<td>PSPACE</td>
<td>PSPACE</td>
<td>2ExpTime</td>
</tr>
<tr>
<td>VLDL</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>3ExpTime</td>
</tr>
<tr>
<td>VLTL</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>?</td>
</tr>
<tr>
<td>VLDL\text{exp}</td>
<td>ExpTime</td>
<td>ExpTime</td>
<td>3ExpTime</td>
</tr>
</tbody>
</table>